
The Basics of Logics

Krishnakant

13 Jan 2025

MLS02 Madhava Lecture Series, Theoretical Nexus

Krishnakant while Lecture

Logics

Definition 1. Logic

Logic is the systematic study of reasoning. It helps us determine an argument's validity or invalidity. Basically, it provides rules for evaluating truth.

Importance

- 1. Foundational to Mathematics, Computer Science, and Philosophy.
- 2. Used in Programming, Legal Arguments, and Decision-making.

Definition 2. Propositions:

A statement that can either be true or false, but not both. Examples:

- "Earth is round." (True)
- "5 is greater than 10." (False)

Definition 3. Non-propositions:

Statements that cannot be classified as true or false. Examples:

- "What is your name?" (Question)
- "Please close the door!" (Command)

Key point to pick up:Logic deals with propositions and their relationships, not commands or questions.

Logical Connectives

These are the operations that combine propositions to form compound statements.

 AND (∧): Conjunction True if both propositions are true. Example: P = True, Q = True, P ∧ Q = True

Truth Table Example:

P	Q	$P \wedge Q$
T	T	Т
T	F	F
F	T	F
F	F	F

• OR (\lor) : Disjunction

True if at least one proposition is true.

Truth Table Example:

P	Q	$P \wedge Q$
T	T	Т
T	F	T
F	T	T
F	F	F

• NOT (¬): Negation

Reverses the truth value of a proposition.

Truth Table Example:

P	$P \neg Q$
F	Т
T	F

 IMPLIES (⇒): Implication True unless a true statement implies a false one.

Truth Table Example:

P	Q	$P \wedge Q$
T	T	Т
T	F	F
F	T	T
F	F	T

 IFF (⇐⇒): Biconditional True if both propositions have the same truth value.

Truth Table Example:

P	Q	$P \wedge Q$
T	T	Т
T	F	F
F	T	F
F	F	T

Types of Logics

propositional Logic:

Deals with simple propositions and their connectives.

Predicate Logic

- Universal Quantifiers (\forall): "For all"
- Existential Quantifiers (\exists): "There exists"

Conditional Statements

The conditional statement $P \implies Q$: Let P and Q be propositions.

- $P \implies Q$ is false when P is true and Q is false, and true otherwise.
- P is called the hypothesis (or antecedent/premise).
- Q is the conclusion (or consequence).

Conditional statements are also called **implications**. **IFF and IMPLIES** are conditional statements.

Interactive Segment

Question 1.

A person meets three people: one always tells the truth, one always lies, and one alternates between truth and lies. The person asks: who is the liar? What logical method can be used to identify the liar?

Question 2.

Make the Truth Table for :

 $(P \land Q) \implies \neg R$