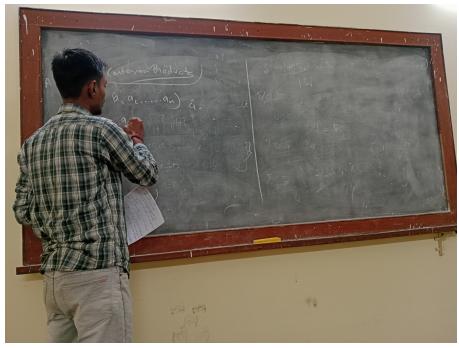
The Basics of Set Theory

Krishnakant

10 Jan 2025

MLS02 Madhava Lecture Series, Theoretical Nexus



Krishnakant while Lecture

1 Basics of Sets

The language of sets is a means to study such collections in an organized fashion. Let's see the definition: [Intuitive] [Not a part of formal theory of sets].

Definition 1: A set is an unordered collection of distinct objects called **elements or members of** the set.

To take an element a in set A, we write:

 $a \in A, a \notin A$ [denotes not belonging]

Lowercase letters are often used for elements, while Uppercase are generally denoted as **Names of the Sets**.

Several Ways to Represent Sets:

1. **Roster Form:** One way is to list all the members of the set, when this is possible. we use a notation where all members os the set are listed between braces.

The set V of all vowels in the English alphabet can be written as $V = \{a, e, i, o, u\}$

Sometimes the roster method is used to describe a set without listing all its members. Some members of the set are listed, and then ellipses (\ldots) are used when the general pattern of the elements is obvious.

No less than 100: $A = \{1, 2, 3, \dots, 99\}.$

2. Another way is to use **Set Builder Notation:**

General form: $\{x \mid x \text{ has property } P\}.$

For instance:

 $O = \{x \mid x \text{ is an odd integer less than } 10\}.$

Some Common Sets You Must Know:

- $\mathbb{N} = \{0, 1, 2, 3, \dots\}$, the set of all natural numbers,
- $\mathbb{Z} = \{\cdots, 2, 1, 0, 1, 2, \cdots\}$, the set of all integers $\mathbb{Z}^+ = \{1, 2, 3, \ldots\}$, the set of all positive integers
- $\mathbb{Q} = \left\{ \frac{p}{q} \mid p \in \mathbb{Z}, q \in \mathbb{Z}, q \neq 0 \right\}$, the set of all rational numbers.
- \mathbb{R} , the set of all Real numbers,
- \mathbb{R}^+ , the set of all Positive Real numbers,
- \mathbb{C} , the set of all Complex numbers,

Intervals in Calculus: Sometimes, we use subsets like intervals to represent the set of two real numbers a and b between them:

 $[a, b] \text{ (Closed Interval),} \quad (a, b) \text{ (Open Interval).}$ $[a, b] = \{x \mid a \le x \le b\}$ $[a, b) = \{x \mid a \le x < b\}$ $(a, b] = \{x \mid a < x \le b\}$ $(a, b) = \{x \mid a < x < b\}$

Sets can have other sets as their elements or members.

For Example: The set N, Z, Q, R is a set containing four elements, each of which is a set. The four elements of this set are N, the set of natural numbers; Z, the set of integers; Q, the set of rational numbers; and R, the set of real numbers.

Definition 2: Two sets are **equal** if and only if they have the same elements. Therefore, if A and B are sets, then A and B are equal if and only if

Mathematical Representation:

 $A = B \iff \forall x (x \in A \leftrightarrow x \in B)$

We write A = B if A and B are equal sets.

Null/Empty Set (\emptyset) :

The set having no element, denoted by \emptyset or $\{\}$.

Singleton Set:

The set with only one element: $\{B\}$.

A single element of the set is the empty set itself.

Example: A useful analogy for remembering this difference is to think of folders in a computer file system.

The empty set can be thought of as an empty folder and the set consisting of just the empty set can be thought of as a folder with exactly one folder inside, namely, the empty folder

2 Naive Set Theory:

George Cantor's Original Set Theory.

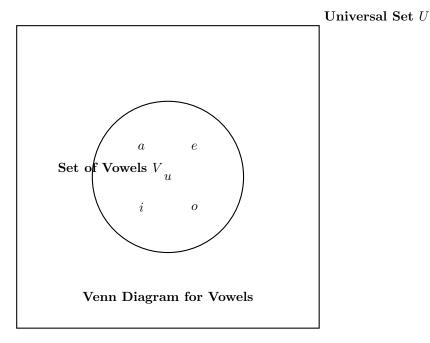
We will be going with this theory. May get familiarity with *Axiomatic Set Theory* if we go further.

Venn Diagram:

Graphical Representation of Sets.

Universal Set UOften used to indicate the relation between sets.

Example: A diagram showing $A \subseteq U$ inside a circle.



We may encounter situations where the **elements of one set are also elements of a second set.** Let us introduce some terminology and notation to express such relationships.

Definition 3: Subsets:

A set is a **subset** of B if and only if all elements of A are in set B. A is in set B:

$$A \subseteq B \quad [A \text{ is the subset of } B]$$
$$\forall x (x \in A \implies x \in B)$$

 $A \not\subseteq B$

Showing A is **not** a subset of B:

A subset itself is a subset of B.

Proper Subset:

We wish to emphasize: Set A is a subset of B but $A \neq B$:

$$A \subset B$$
$$\forall x (x \in A \implies x \in B) \land \exists x (x \in B \land x \notin A)$$

Showing two sets are **equal**. If A = B, show that:

$$A \subseteq B, B \subseteq A$$

For instance:

$$A = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}, \quad B = \{x \mid x \text{ is a subset of } \{a, b\}\}$$
$$A = B$$
$$\boxed{\mathbf{Note:}\{a\} \in A \text{ but } a \notin A.}$$

3 The Size of a Set:

Definition 4: Finite set :

Let S be a set, and it has exactly n elements in S. n is a non-negative integer, we say that S is a **finite set**, and n is the **cardinality** (denoted by |S|). **Example:** S = Set of odd true integers less than 10:

$$|S| = 5$$

Definition 5: Infinite Set

A set is said to be **infinite** if it is not finite. **Example:** Set of all positive integers.

Definition 6: Power Sets:

S is a **power set** of T—the set of all subsets of T.

Power Set of S: Denoted by P(S).

Example: Power Set of $\{1, 2\}$

 $P(S) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}\$

Question:

What is the power set of the empty set?

 $P(\emptyset) = \{\emptyset\}$

What is the power set of $\{\emptyset\}$?

$$P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}\$$

The number of elements in the power set is 2^n , where n is the number of elements.

4 Cartesian Products:

Definition 7: The ordered *n*-tuple:

The ordered *n*-tuple (a_1, a_2, \ldots, a_n) is an **ordered collection**, where a_1 is the first element, and a_n is the *n*th element.

Two *n*-tuples are **equal** if and only if their corresponding pairs of elements are equal.

$$(a_1, a_2, \dots, a_n) = (b_1, b_2, \dots, b_n) \iff a_i = b_i \forall i.$$

In particular, ordered 2-tuples are called ordered pairs.

4.1 Definition 8:Cartesian Products:

Let A and B be sets. The Cartesian product $[A \times B]$ is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$.

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

Example: Let $A = \{1, 2\}, B = \{a, b, c\}.$

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$$

4.2 Definition 9:Cartesian product of n sets

The Cartesian product of the sets A_1, A_2, \ldots, A_n , denoted by $A_1 \times A_2 \times \cdots \times A_n$, is the set of ordered *n*-tuples (a_1, a_2, \ldots, a_n) , where a_i belongs to A_i for $i = 1, 2, \ldots, n$.

 $A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) \mid a_i \in A_i \text{ for } i = 1, 2, \dots, n\}$

Question: What is the Cartesian product of $A = \{0, 1\}, B = \{S, T\}, C = \{\emptyset, 2\}$?

 A^2 denotes the Cartesian product with itself.

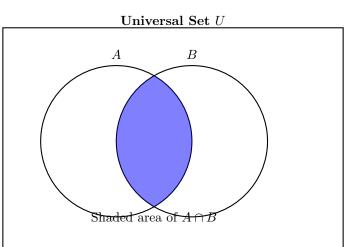
5 Set Operations

Definition 1:

Let A and B be two sets. The **union** of A and B, denoted $A \cup B$, is the set containing those elements either in A or in B.

Definition 2:

 $A \cap B$ (Intersection) is the set containing those elements in both A and B.



Definition 3:

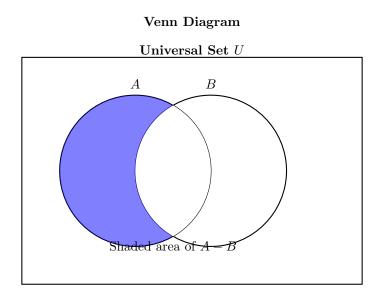
Disjoint Sets – If $A \cap B$ is an empty set.

Definition 4:

The **difference** A - B is the set of elements that are in A but not in B.

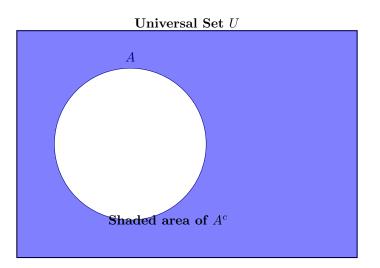
$$A - B = \{x \mid x \in A \land x \notin B\}$$

Sometimes also denoted as $A \setminus B$.



Definition 5:

The **complement** of a set A is denoted by A^c or \overline{A} .



6 Set Identities:

TABLE 1 Set Identities.	
Identity	Name
$\begin{array}{l} A \cap U = A \\ A \cup \emptyset = A \end{array}$	Identity laws
$\begin{array}{l} A \cup U = U \\ A \cap \emptyset = \emptyset \end{array}$	Domination laws
$\begin{array}{l} A\cup A=A\\ A\cap A=A \end{array}$	Idempotent laws
$\overline{(\overline{A})} = A$	Complementation law
$\begin{array}{l} A \cup B = B \cup A \\ A \cap B = B \cap A \end{array}$	Commutative laws
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws
$\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws
$\begin{array}{l} A\cup\overline{A}=U\\ A\cap\overline{A}=\emptyset \end{array}$	Complement laws