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A note about these notes. I have assumed the knowledge of a vector space defined

over a field F. I have added a few ‘Note’(s) which are not relevant and can be skipped if

needed. Moreover, the section of Affine Geometry has not been written up but compared

to ‘Modules’, it is fairly short one, so, let’s cheers. I thank Purnima Tiwari for taking

the notes during the lecture and lending me afterwards.

In the next version of these notes, I will add the references and some extra content

about modules.

1. The Structure of Rings

Mathematics, or more exactly biased mathematics, is heavily about the algebraic

structures and maps between them. A group is one of them.

Definition 1. A group is a set S with a binary operation ∗ which has an associative law

of composition, with the closure S ∗ S → S, having a unique identity element such that

every element in S is invertible under the identity.

A group is already a monoid (which is already in the definition). Existence of idenity

and inverse is a must for groups structures. A group homomorphism ϕ between two

groups G and H

(1) φ : G → H

is a map which preserves the group structure. In particular, it sends the identity element

eG of G to the identity element eH of H. Moreover, as we said, the structure is preserved

(2) φ(a ∗G b) = φ(a) ∗H φ(b).

One can also define a group isomorphism between G andH to be a group homomorphism

of which inverse map also exists, implying φ is a bijection. Two groups are of same order1

if they are isomorphic. There are wonderful things in group theory which include group

actions, Sylow theorem and representations of groups. But we will drop the groups right

here only. We will start with rings now.

Definition 2 (Ring). A ring R is also an algebraic structure, like groups, but it is de-

fined with two binary compositions (+, ∗) called addition and multiplication respectively.

Under addition, it has following properties

(1) R is commutative under +, (a+ b = b+ a) ∀a, b ∈ R.

(2) R is associative under +, (a+ b) + c = a+ (b+ c).

1Order of the group, in finite case, is just defined as the cardinality of its underlying set. If the
underlying set is infinite, then the group is infinite too.
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(3) R admits an additive identity and every element in R is invertible under such

identity. ∀a ∈ R, a+ e = a such that a+ (−a) = e.

Under these properties, it can be seen that (R,+) forms an abelian group. Now, under

multiplication, the business requires care and has following properties

(1) (R, ∗) forms a monoid and thus associative, (a ∗ b) ∗ c = a ∗ (b ∗ c).
(2) R with ∗ is distributive with respect to addition

a ∗ (b+ c) = (a ∗ b) + (a ∗ c)

(b+ c) ∗ a = (b ∗ a) + (c ∗ b)

(3) R admits 1R such that a ∗ 1R = a.

The property (3) may or may not be adopted. In these notes, we will assume that 1R

exists in the ring. It is called a ‘rng’ when 1R is not assumed in R.

So, in a ring R, we do not assume commutativity under ∗ nor the existence of inverses

for the elements. If R admits commutative with respect to multiplication, i.e, a∗b = b∗a,
then the ring is called commutative ring. A very easy example of commutative ring (with

unity) is the ring of integers Z. Other examples include the zero ring, set of all real valued

functions It is not always necessary to work with the commutative rings. But, in this

notes, we will be mostly concerned with the commutative rings. Some examples of non-

commutative rings are the quaternion ring H, n×n matrices with entries from a ring R,

endomorphisms2 of an abelian group End(G). It is also called the endomorphism ring

of G.

Like group homomorphisms, we also have ring homomorphisms between two rings R

and S such that for a ring homomorphism φ : R → S

φ(a+ b) = φ(a) + φ(b),(3)

φ(a ∗ b) = φ(a) ∗ φ(b)(4)

φ(1R) = 1S(5)

for all the a, b in R. We can also have a composition of ring homomorphisms like

(6) φ : R → S, φ′ : S → T

then

(7) φ · φ′ : R → T

2An endomorphism of a group is a group homomorphism End : G → G. While an automorphism
Aut : G → G is an isomorphism.
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We can also draw commutative diagrams (a language which is very powerful in algebra)

for these ring homomorphisms

R S

T

φ

φ·φ′
φ′

In particular, the ring homomorphism is a mapping of the additive group of R to the

additive group of S and the multiplicative group of R to the multiplicative group of S.

Similarly, we can also define a ring isomorphism.

Example 1. For the ring of (rational) integers Z and ring of even integers 2Z, see if

the homomorphism φ : Z→ 2Z is a bijection or not.

Ideals.

Definition 3 (Ideal). An ideal of a Ring I is a subset of R such that

(8) ir ∈ I, ∀i ∈ I, r ∈ R

but this is a definition for commutative rings. In general, we have a left ideal and a right

ideal. Eq. (8) is the definition of the left ideal, I is a right ideal when

(9) ri ∈ I

and I is a two-sided ideal when it is both a left ideal and a right ideal (which is in the

case of commutative rings).

A good example in the ring of integers Z is just 2Z

(10) ir ∈ 2Z, i ∈ 2Z, r ∈ Z

Moreover, an ideal is an additive subgroup of R and it relies on the structure of the

ring since it is a subset of the ring. There are special types of ideals like principal ideals,

prime ideals, maximal ideals.

Definition 4. A ring R is called Noetherian when its ideals chains are written in as-

cending order and at some point, they saturate

(11) I1 ⊂ I2 ⊂ I3 · · · In−1 ⊂ In = In+1

Definition 5 (Simple Rings). A ring which has only two ideals contained in the ring

which are {0} (zero ideal) and {1} (the ring itself) is called simple ring.
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To see how {1} ideal is the ring itself, let us do the following. Let {1} be an ideal of

the ring R then {1} ∈ I then it immediately follows that

(12) {1}R = R ∈ I

and thus {1} ideal is the ring itself.

We would now introduce the concept of fields which have same crux of algebraic

structures.

Definition 6. A Field (F,+, ∗) is a set with the following properties under +

(1) (F,+) is an abelian group and thus commutative.

(2) There are many properties that can be deduced from (F,+) being an abelian group

such that existence of identity, additive inverses and associativity.

and under composition ∗

(1) (F, ∗) is commutative thus ab = ba where a, b ∈ F .

(2) There is an identity 1F and every element is invertible with respect to this identity.

(3) It is distributive with respect to +

a ∗ (b+ c) = (a ∗ b) + (a ∗ c)

Examples of Fields are the R, and Zn (since Z does not necessarily form a field).

Exercise 1. Zn is the quotient ring Z/nZ. Show that Z/nZ forms a field only when n

is a prime3.

Note. It is another good exercise to see that for a ring R, the quotient ring R/I, where

I ∈ R an ideal, is a field only when I is the maximal ideal of ring R.

Theorem 1. A Field F is a simple and commutative ring.

Proof. Let F be a field and I ⊂ F . Let a ∈ I and a−1 ∈ F. Then aa−1 ∈ I and we know

that in a field F we have aa−1 = 1 thus 1 ∈ I. It can be understood from Def. 6 that

1 ∈ I implies that field F is the ideal itself. It can be checked that there does not exist

any other ideal except the zero ideal, of course.

We took a commutative ring R in order to satisfy

(13) aa−1 = a−1a = 1

which is essential in a field. Thus it is found that a ring forms a field when it is commu-

tative and simple4. □

3Thus Z2 will be a field but Z6 will not, it is good to find out why this happens.
4The idea of ‘simple’ structure also exists in Lie algebras or plain group theory
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Example 2. Show for a ring R, we have a ∗ 0 = 0.

It is easy to see that. Let X = a ∗ 0 then X must be in the ring

X = a ∗ 0

X + 0 = a ∗ (0 + 0)

X + 0 = (a ∗ 0) + (a ∗ 0) (Using distributive property)

X + 0 = X +X =⇒ X = 0

Example 3. Show for a ring R that −(ab) = −a(b) = a(−b) is the additive inverse of

ab.

Let ab ∈ R then

ab+X = 0

Let −ab be the X

ab+ (−ab) = a(b+ (−b)) (Using distributive property)

= a(0) = 0

1.1. Modules over Ring. Now, we are about to define the modules over a ring and

see how it is a generalization of the vector spaces which are defined over a field.

Definition 7. A module over ring is defined when a set M which is an abelian group

(M,+) and its associated ring R has the following property

(14) R×M → M.

This is the definition of a left R-module. One similarly defines a right R-module with

the map M × R → M . When R is commutative the left R-modules and R−modules

are same. The operation in R ×M → M is called ‘scalar multiplication’ such that the

following are true for scalars x, y ∈ R and a, b, c ∈ M

x · (a+ b) = (r · a) + (r · b)

(x+ y) · a = (x · a) + (y · a)

(x · y) · a = x · (y · a)

1 · a = a

The difference between the modules and the ideals are that the modules need not be

the subset of the ring. In fact, every ideal is a module but the converse need not to be

true. A module is also an abelian group. A ring is a module over itself.

A bimodule (R,S) is the a module M which a left R-module and right S-module.
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Note. A module over ring R can be localized to points (prime ideals p) of the spectrum

of the ring.

(15) MR → Mp∈SpecR

Support of a module is given by

(16) SuppMR = {p ∈ SpecR,Mp ̸= 0}

So basically it consists of all the prime ideals which does not make modules vanish after

localization.

Let us define the torsion of a module. It is defined to be

(17) tor(M) = {m : rm = 0, r ̸= 0}

which is the collection of allm which are annihilated by r. A module is called torsion-free

if rm = 0 is only possible when r is a zero divisor and r = 0 or m = 0. For an integrable

domain (a ring where the only zero-divisor is zero), we have torsion-free modules. It is

important that module have a definition of torsion and it makes them a little different

to the vector spaces which are defined over field.

Our goal is to understand how modules over ring is a generalization of vector spaces

defined over field. It is likely that someone is tempted to investigate into the similarity

in the definition of the modules and vector spaces, especially the scalar multiplication

which is crucially defined in both. At last, we wish to see the following theorem.

Theorem 2. A module M defined over a ring R is a vector space if R is a commutative

ring and a field (of course, which implies that it is commutative), where the scalars (in

F× V → V ) are from the R.

We hope to discuss the above two theorems. Let us compare with what we have with

modules over ring and vector spaces over fields.
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Table 1. The Dictionary.

Modules over R Vector Space over F

M ×R → M V × F → V

Scalars come from the ring and division is not
allowed since they are not invertible.

Scalars come from the field and they are
invertible, i.e, aa−1 = 1 where a, a−1 ∈ F.

The concept of a linear independent set is not
always applicable and sometimes, we may not
have any independent set in a module. Instead.
we have a definition of the torsion of module.

Linear independent sets exist in a vector space
and provide definition to further things like

basis.

Similarly, a basis is hard to define for a
module. And it need to have to define a basis.
Same applies for the concept of dimension.

When a module admits a basis and is
finitely-generated, it is called free module.

A basis always exists and thus the concept of a
dimension.

Just like vector spaces, we can define the
tensor products between the modules.

Tensor products between vector spaces are
defined.

Direct sum and direct product can always be
defined.

Direct sum and direct product between vector
spaces are clearly defined.

Theorem 3. A vector space is a F−module which is torsion-free.

Proof. Let V be a module defined over the field F. The torsion submodule of the V is

(18) tor(V ) = {v;αv = 0, v ̸= 0, α ∈ F}

Now, let us see what is the torsion of V . We can start with

(19) αv = 0

and since α is a scalar in F so there exists a−1, we multiply a−1 from

(20) a−1av = 0



9

and since a−1a = 1 we have

(21) 1v = 0 =⇒ v = 0

such that the there is no torsion and V is a torsion-free module. □

Using the table, we can see the modules are clearly a generalization of vector spaces.

A vector space is a free module which has a field for scalars.

Now, a module is an abelian group, it shares many properties of the groups like cyclic

property, center, order, and so on.

2. Affine Geometry

Will be updated soon- AV
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