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Abstract

These notes aim to provide an introduction to the basics of inner products and Dirac’s Bra Ket
notation. These notes are divided into two parts in first part we will talk about inner product on Rn

and Cn, orthonormal bases, Gram-Schmidt procedure, orthogonal projectors. In second part we will
talk about Dirac bra-ket notation for inner products.
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1 Inner Product

1.1 Inner Product in Rn

An inner product on a vector space V over F is a machine that takes an ordered pair of elements of V ,

that is, two vectors, and yields a number in F. In order to motivate the definition of an inner product we

first discuss the case of real vector spaces and begin by recalling the way in which we associate a length

to a vector.

The length of a vector, or norm of a vector, is a real non-negative number, equal to zero if the vector

is the zero vector. In Rn a vector a = (a1, . . . , an) has norm ∥a∥ defined by

∥a∥ =
√
a21 + . . .+ a2n (1.1)

Squaring this we view ∥a∥2 as the dot product of a with a:

∥a∥2 = a · a = a21 + . . .+ a2n (1.2)

In order to generalize this dot product we require the following properties:

1. a · a > 0, ∀ a

2. a · a = 0 ⇐⇒ a = 0

3. a · (b1 + b2) = a · b1 + a · b2.

4. a · (αb) = αa · b, with α ∈ R a number.

5. a · b = b · a.

The above axioms guarantee a fundamental result called the Schwarz inequality:

|a · b| ≤ |a||b| (1.3)
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Note that on the left-hand side the bars denote absolute value while on the right-hand side they denote

norm.

1.2 Inner Product in Cn

An inner product on a vector space V over F is a map from an ordered pair (u, v) of vectors in V to a

number ⟨u, v⟩ in F. The axioms for ⟨u, v⟩ are inspired by the axioms we listed for the dot product.

1. ⟨v, v⟩ ≤ 0, ∀ v ∈ V

2. ⟨v, v⟩ = 0 ⇐⇒ v = 0

3. ⟨u, v1 + v2⟩ = ⟨u, v1⟩+ ⟨u, v2⟩.

4. ⟨u, αv⟩ = α⟨u, v⟩, with α ∈ F

5. ⟨u, v⟩ = ⟨v, u⟩∗

The norm ∥v∥ of a vector v ∈ V is defined by relation

∥v∥2 = ⟨v, v⟩ (1.4)

Two vectors u, v ∈ V are said to be orthogonal if ⟨u, v⟩ = 0. This, of course, means that ⟨v, u⟩ = 0 as

well. The zero vector is orthogonal to all vectors (including itself). The inner product we have defined is

non-degenerate: any vector orthogonal to all vectors in the vector space must be equal to zero. Indeed,

if x ∈ V is such that ⟨x, v⟩ = 0 for all v, pick v = x, so that ⟨x, x⟩ = 0 implies x = 0 by axiom 2.

2 Orthonormal Basis and Orthogonal Projectors

A list of vectors is said to be orthonormal if all vectors have norm one and are pairwise orthogonal. If

(e1, . . . , en) is a list of orthonormal vectors in V then

⟨ei, ej⟩ = δij (2.5)

We also have a simple expression for the norm of a1e1 + . . .+ anen, with ai ∈ F:

∥a1e1 + . . .+ anen∥2 = ⟨a1e1 + . . .+ anen, a1e1 + . . .+ anen⟩ (2.6)

= ⟨a1e1, a1e1⟩+ . . .+ ⟨anen, anen⟩ (2.7)

= ∥a1∥2 + . . .+ ∥an∥2 (2.8)
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This result implies the somewhat nontrivial fact that the vectors in any orthonormal list are linearly

independent. Indeed if a1e1 + ... + anen = 0 then its norm is zero and so is ∥a1∥2 + . . . + ∥an∥2. This

implies all ai = 0, thus proving the claim. An orthonormal basis of V is a list of orthonormal vectors

that is also a basis for V . Let (e1, . . . , en) denote an orthonormal basis. Then any vector v can be written

as

v = a1e1 + . . .+ anen, (2.9)

for some constants ai that can be calculated as follows

ai = ⟨ei, v⟩ (2.10)

Indeed,

⟨ei, v⟩ =
∑
j

⟨ei, ajej⟩ =
∑
j

aj⟨ei, ej⟩ =
∑
j

ajδij = ai. (2.11)

Therefore any vector v can be written as

v = ⟨e1, v⟩e1 + . . .+ ⟨en, v⟩en =
∑
i

⟨ei, v⟩ei (2.12)

. To find an orthonormal basis on an inner product space V we can start with any basis and then

follow a certain procedure. A little more generally, we have the Gram-Schmidt procedure: Given a list

(v1, . . . , vn) of linearly independent vectors in V one can construct a list (e1, . . . , en) of orthonormal vectors

such that both lists span the same subspace of V . An inner product can help us construct interesting

subspaces of a vector space V . Consider any subset U of vectors in V . Then we can define a subspace

U⊥, called the orthogonal complement of U as the set of all vectors orthogonal to the vectors in U :

U⊥ = {v ∈ V | ⟨v, u⟩ = 0, for all u ∈ U}. (2.13)

This is clearly a subspace of V . When the set U is itself a subspace, then U and U⊥ actually give a direct

sum decomposition of the full space:

Theorem 1 If U is a subspace of V , then V = U ⊕ U⊥.

One can define a linear operator PU , called the orthogonal projection of V onto U , that acting on v

above gives the vector u : PUv = u. It is clear from this definition that:

1. rangePU = U . Thus PU is not surjective.
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2. nullPU = U⊥ . Thus PU is not invertible.

3. PU acting on U is the identity operator. Thus if we act twice with PU on a vector, the second action

has no effect as it is acting on a vector in U . Thus

PUPU = P 2
U = PU (2.14)

4. |PUv| ≤ |v|. The action of PU cannot increase the length of a vector. This follows from the

decomposition and the Pythagorean theorem:

|v|2 = |u+ w|2 = |u|2 + |w|2 ≥ |u|2 = |PUv|2, (2.15)

and taking the square root.

5. detPU = 0

6. trPU = n = dimn.

3 From inner products to bra-kets

It all begins by writing the inner product differently. The first step in the Dirac notation is to turn inner

products into so called “bra-ket” pairs as follows

⟨v, u⟩ → ⟨v|u⟩

Instead of the inner product comma we simply put a vertical bar! The object to the right of the arrow

is called a bra-ket. Here the symbol |v⟩ is called a ket and the symbol ⟨v| is called a bra. The bra-ket is

recovered when the space between the bra and the ket collapses. Since things look a bit different in this

notation let us re-write a few of the properties of inner products in bra-ket notation.

1. ⟨v|v⟩ ≤ 0, ∀ v ∈ V

2. ⟨v|v⟩ = 0 ⇐⇒ v = 0

3. ⟨u|v1 + v2⟩ = ⟨u|v1⟩+ ⟨u|v2⟩.

4. ⟨u|αv⟩ = α⟨u|v⟩, with α ∈ F

5. ⟨u|v⟩ = ⟨v|u⟩∗
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Sometimes the label inside a ket is the vector itself, other times it is a quantity that characterizes the

vector. Bras are rather different from kets although we also label them by vectors. Bras are linear

functionals on the vector space V . The set of all linear functionals on V is in fact a new vector space

over F, the vector space V ∗ dual to V .

Note here that if the label in the ket is not a vector; it is the position on a line, or a state in an infinite

dimensional complex vector space. Therefore, the following should be noted

|ax⟩ ≠ a |x⟩ , for any real a = 1,

|−x⟩ ≠ −|x>, unless x = 0,

|x1 + x2⟩ ≠ |x1⟩+ |x2⟩ ,

All these equations would hold if the labels inside the kets were vectors.
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