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1 Motivation to Vector Spaces

Review 12th Class

Let the vectors be:

= ali =+ a25
=b1i+boj

Vector Addition

+b= (a1 +b1)i + (ag + b2)j

ST

Scalar Multiplication

If o € R, then:

ad = aart + aaz)

For example, let @ = 2i + 47 and o = 3. Then:

1.1

1.

ad = 61 + 125

Properties of Vector Spaces

Commutativity: a + b=b+a

Associativity of Addition: @+ (b+¢&) = (@+b) +¢&

Existence of Zero Vector: There exists a zero vector 0 = 07 + 05’ such that:

@+0=@d and b=0

Existence of Additive Inverse: For all vectors @ = a1i + asj + ask, there exists —@ = (—a1)i 4+ (—az)j + (—a3)k such
that:
G+ (—@) =0i4+0j +0k=0

.

Distributivity of Scalar Multiplication: a(@ + b) = ad@ + ab
Distributivity over Scalars: (o + 8)d = ad + Sa
Associativity of Scalars: (af)d = a(8ad)

Multiplicative Identity: 1-d@ = laii + lag] = @

2 What is Field?

A non-empty set F' together with two binary operations + (called addition), - (called multiplication) is said to be a field
if the following conditions are satisfied:

1.
2.

3.

a+b=b+a Va,beF {Commutativity of Addition}
a-b=b-a VabeF {Commutativity of Multiplication}
Ya,b,ce F:

(a+b) +c=a+ (b+ c){Associativityof Addition}
(a-b)-c=a-(b-c){Associativityof Multiplication}



4. Existence of addition and multiplicative identity:

e J0€ FFsuchthata+0=a Va€F
e Jl€ Fsuchthata-1=a Va€F

5. Existence of additive and multiplicative inverses:

e YVa€e€ F,3be€ Fsuchthata+b=0 (Note: b is denoted by —a)
e Vac F,a#0,3bec Fsuchthata-b=1 (Note: b is denoted by a™1)

6. Distributivity:

a-(b+c)=ab+ac
(a+b)-c=ac+bc Va,b,ceF

Note: Closure property holds for all operations.

Example of Finite Field

Ex: Let p be prime.

Z, ={0,1,2,3,...,p— 1}
and binary operation:

1. a+ b = least non-negative remainder when a + b is divided by p.

(a+b) = (a+b)mod p

2. ab = least non-negative remainder when ab is divided by p.

ab = (ab) mod p

(Zp,+,-) is a field.

Note: p is prime.

Fields

e (R,+,)

* (Q+,)

o (Zp,+,-) where p is prime

o (Z3,+,-) where Z3z = {0,1,2}

Example: (Z3,+,-) where p = 3.

e Addition table:

e Multiplication table:

Note: In Zp,
a+b=(a+b)mod p, ab= (ab)mod p.



3  Vector Spaces

Let F be any field, and V' be a non-empty set. We say that V(F) is a vector space over F if we can define operations:

1. Vector Addition: Denoted by + : Vu,v € V, u + v € V (unique element).
2. Scalar Multiplication: Vo € F, Vv € V, a-v € V (unique element).

Such that the following conditions are satisfied:

(Al) u+v=v+u Vu,veV.

(A2) (u+v)+w=u+ (v+w) Yu,v,weV.

(A3) 30 €V such that u+0=u VYu€V.

(A4) Yu eV, 3y € Vsuch that u+y =0.
(Note: y is denoted by —u).

(S1) a-(u+v)=a-u+a-v VaeF, uveV.

(S2) (a+pB) - v=a-v+p-v Va,BEF, veV.

(S3) (aB) - v=a-(B-v) Va,BeF,veV.

(S4) 1-v=v YveV.

Important Notes

e V(F)is a vector space over F . We write V(F) as a vector space.

e If V(IF) is a vector space, then elements of V are called vectors, and elements ofF are called scalars.

4 Properties of Vector Space

If V(F) is a vector space:

0-v=0 VveV.
a-0=0 Vack.
. (—a)v=—(a-v) VYa€eF,veV.
a-(—v)=—(a-v) VaeF veV.
(o) (—v)=a-v Va€eF,veV.

M

Key Points

e V(F) is a vector space if:
— Vis a non-empty set.
— F is a field.
— There exists unique operations (vector addition and scalar multiplication) sat-isfying all axioms.

e Every field F is a vector space over itself.



5 Subspace of a Vector Space

Let V(F) be any vector space, and W be a non-empty subset of V. Then W is said to be a subspace of V if:

0ew (Zero element of V is in W).
uveW — ut+veWw.

ueW — —uecW.

acFueW = aueW.

W e

Example

Let V =R3 (i.e., {(#1,%2,23) : 1,22, 23 € R}) and F = R. Define:
W ={(a,0,a): a € R}

e Vector Addition: (a1,0,a1) + (a2,0,a2) = (a1 + a2,0,a1 + a2).

e Scalar Multiplication: a(a,0,a) = (aq,0, aa).
Since V (F) is a vector space, from (i), (ii), (iii), and (iv), W is a subspace of V.

Vector spaces are subspaces of fields (some field IF).

Result

If V(F) is a vector space and ¢ # W C V, then W is a subspace of V if and only if:

1. W is a vector space w.r.t. vector addition and scalar multiplication that makeV (F) a vector space.

5.1 Subspace Test-1

LetV (F) be a vector space, and ¢ # W C V. Then W is a subspace of V if and only if:

1. z,yeW — x4+yecW.
2. areW VaeF,zeW.

5.2 Sub-field of a Field

Let F be any field, and K a non-empty subset of F. F is said to be a sub-field of F if:

e Vabe K — a—beK.
e VabeK,b£A0 = ab '€ K.

Example

QW?2)={a+bV2|a,becQ}

1. Let z = a1 + b1V2 andy:a2+b2\/§.

x—y= (a1 —az)+ (b1 —b2)V2 € Q(v2) (since aj —az € Q and by — bz € Q).
2. fy#0 = a2 #0 or by # 0, then:

x a1+b1\/§><a2—b2ﬂ

Y az+bevV2  as —bav2
Simplifying:
—b1b 2(asb; — b
Tz _ (ar1a2 1 2)+f(a2 1 2a1) GQ(\/i)A

Y a% — 2b§




Qv/2 is sub-field of Q+/2.
Q2 is sub-field of Q(i).
Q is sub-field of R.

Q2 is sub-field of R.

R, Q, Qv/2 is sub-field of C.
Q(2) is sub-field of C.




6 Space of n-Tuples
Let F be any field and k be a sub-field of F. Define:

V =F" ={(a1,a2,as,...,an) | a1,a2,...,an € F}.
Then V(F') is a vector space if:

1. Vector Addition:
(al,ag,...,an) + (b1,b2,...,bn) = (al +b1,a2 +b2,...,an —I—bn).

2. Scalar Multiplication:
a€k, alar,az,...,an) = (aa1,aas,...,can).

3. Zero Vector:
0 =(0,0,0,...,0).

Examples:

e F=R k=R

— R™(R) is a vector space.
* RI(R) is a vector space.
* R2(R) is a vector space.

* R3(R) is a vector space. ,

- R" ={(a1,a2,a3,...,an) | a1,a2,0a3,...,an € R},
* R? = {(a1,a2) | ai,az € R}.
* B3 = {(a1,a2,a3) | a1,a2,a3 € R}.
* R4 = {(al,ag,a3,a4) | ai,a2,a3,a4 € R}.

o '=C,k=C:
C"(C) is a vector space.
C(C) is a vector space.
C2(C) is a vector space.

e« F=C, k=R:
o F=C,k=Q:

7 Space of Matrices
Let F be any field and k be a sub-field of F. Define:

V=F"*"={A=(aij)mxn |ai; EF Vi=1,2,...,m,j=1,2,...,n}.
Then Vis a vector space over k, w.r.t.:

1. Vector Addition:
(@ij)mxn + (bij)mxn = (@ij + bij)mxn-

2. Scalar Multiplication:
Oé(aij)mxn = (aaij)mxn-

3. Zero Matrix:
O = (0)mxn-

Note
o C={a+ib|abecR}
o C? ={(a1,b1), (az,b2) | a1,b1,az2,bz € F}
o C2 ={(a1 +ib1,az +ib3) | a1,az € R, b1,by € R}
o C3 = {(a1,b1), (az,b2), (a3,b3) | a1,b1,az,bs,as,bz € F}
o C3 ={(a1 +1ib1,az2 +iba,a3 + ibs) | a1,a2,a3 € R, b1, ba,bs € R}
e C2(Q[v2]) or (a+bv2a1+b1v2) (az+b2v?2)




8 Space of Polynomials

Let F be any field, and k be a sub-field of F'. Define

Flz] ={ao + a1t + ast? + .. .} where ag,a1,a2,--- € F and all a; = 0 except finitely many.

For (1+ z),
f®) =14+x+azx®+azx®+... where a; =0andi=1,2,3....
[ Polynomial is eventually zero sequences. (a1, az2,as,...,an)

Then Fz] is a vector space over k, w.r.t:

1. Vector Addition:
f(@) = ag + a1z + asz? + azz®,

g(z) =bo + bixz + box? + bz

= f(z)+9(z) = (a0 + bo)z + (a1 + b1)z® + (az + b2)z + ...

2. Scalar Multiplication:
af(xz) = aaoz + aa1z? + aasz® + ...

3. Zero Vector: Zero Polynomial
O(z) = 04 0z + 022 + 03 + . ..

Note: Zero polynomial of degree is not defined. Some say that its degree is —1.]

Examples
e F=R, k=R

— R(z)(R) is a Vector Space

e« F=R, k=Q
— R(z)(Q) is a Vector Space

e F=R, k=Q(2)
— R(x)(Q(v/2)) is a Vector Space.
¢« F=Q, k=0Q

— Q(z)(Q) is a Vector Space

— Qv2)(z)(Q) is a Vector Space.

e F=CEk=R
— C(z)(R) is a Vector Space.
Also,

— C(z)(Q) is a Vector Space
C(x)(QV2) is a Vector Space.
C(z)(Q)(4) is a Vector Space.
— C(z)(C) is a Vector Space.



9 Space of Functions

Let F' be any field, and k& be a sub-field of F'. Suppose S # ¢. Define
F3={f|f:8— F} (collection of all functions from S to F).

Then F¥S is a vector space over k, w.r.t:

1. Vector Addition: For f,g €V,
(f+9)(s)=Ff(s)+g(s) VseS
(Addition f + g is field addition).
2. Scalar Multiplication: Fora € k, f € V,
(af)s) = af(s) ¥sesS

3. Zero Vector: Zero function:
O:S— F suchthat O(s)=0 VseS

F(0)(s) = f(s) +0(s) = f(s) + 0= f(s) = f+0=Ff

Example: Let S = {u,v}, F =Zy = {0, 1}.
FS={f|f:S—Zs}

F% ={0, f,9,h}
flu) =0, f(v) =1,
g(u) =1, gv) =0
h(u) =1, h(v) =1

F3(F) is a vector space.

Note: Two functions f and g are equal if their domain and co-domain are equal, also their value on each point is also
equal.




10 Space of Sequence

Let F' be any field, and k be a sub-field of F'. Define
V=F%={(an) |an € F, Y n € N}

(an) = (a1, a2,as3,a4,as,...)
Then V is a vector space over k w.r.t:
1. Vector Addition:
(an) + (bn) = (an + bn)
2. Scalar Multiplication:

a- (an) = (aan)

3. Zero Vector:

F*° = {(an) = (a1,a2,a3,a4,...) | a1,a2,--- € R}

Examples:
(1,1,1,1,1,...)
(2,2,1,2,1,2,...)
11
<§7§’>
11
177777"'
(I
(0,0,0,0,0,...)
Operations:

(an) = (a1,a2,a3,...)
(bn) = (b1,b2,b3,...)
{an) + (bn) = (a1 +b1,a2 + b2,a3 +b3,...)

alan) = (a1, aaz, aas, ...)

Example with zero vector:
(an) +(0) = (a1,a2,as,...) +(0,0,0,...)
= <a1+0,a2+07a3+0,...>

= (a1,az,as,...)

11 Properties of Subspaces

#1. Let V(F) be a vector space, then W = {0} is a subspace of V.

1. 0eV

2. Let any z,y e W,soz =y =0
=>z—-—y=0-0=0eW

3. aceF,zeW=a-0=0eW

#2. If V(F) is a vector space, then V is a subspace of itself.

Vae K

[ Note: {0} is called the trivial subspace of V.

1. Any subspace other than {0} is called a non-trivial subspace.

2. If W is a subspace of V and W # V| then W is called a proper subspace of V.

10



V =R? ={(a,b) | a,b € R}
W ={(z,0) |z € R} #{(0,0)}
Then W is a subspace of V. Also, W # V = W is a proper subspace of V.
#3. If W1, Ws,..., W, are subspaces of V(F), then
WinWenWsn.---NnWy,
is also a subspace of V.
Proof: Let z,y e WiNnWanN---NW, and o, 8 € F.
=>z,yeW; Vi=123,...,n
=Sar+pByeW, Vi=1,2,...,n (since W; is a subspace)

Sarx+ByeWrnNnWon..-NW,
= WiNnWan---NW, is a subspace.

#4. Union of two subspaces need not be a subspace.

Example: Let V =R?, F =R.
Wi = {(2,0) | z € R}

W2 ={(0,y) | y € R}
Then W3 and Wy both are subspaces. But W7 U W5 need not be a subspace of V.

z=(1,0) e Wi C W1 UW>
y=(0,1) € Wo C W1 UW>

Now
z4+y=(1,-1)¢ W1, ¢Wa ¢W1UW>

#5. Union of two subspaces is a subspace if and only if one of them is contained in the other.

Proof:
= LetV(F)be a vector space.

= Let Wi, W5 be subspaces of V.
To show W7 U W3 is a subspace of V,

< either Wi C W3 or Wa C Wj.
Let W7 U Wy be a subspace.
To show: W1 C Wy or W C W7,
Let if, neither W is contained in Wa, i.e., Wj Q Wa, nor Wy C W7.

=>JzeW;:z¢ Wy
:>E|yEW2:y¢W1

Now,
ze W) C Wiy UWsy
y € Wy C W1 UW>
z,y € Wi UWs
= z+y € Wi UWsy (since W1 UWs is a subspace)
— z+yeW; orxz+yecW;
= x+yeWi,orz+ye Wy
(z4+y)—x€eWr or (z+y)—yeWs
[ y €W and x € Wy

This is a contradiction on sign of Shukla Sir.

. Either W1 C Wy or W C Wy

11



Converse Part :
Let W1 C Wy or Wy C W3

To show: W; U W5 is a subspace.

since W1 C Wy = W3 UWs =W,y (subspace of V).
& if
We CW1 = WeUW; =W; (subspace of V).

Question. Let V =R" = {(a1,a2,...,an) : a1,a2,...,an € R} considered as a vector space over R. Then which of the following
is (are) subspace(s) of V?

(A). Wi = {(al,ag,a;a) eV : a1 =2a2+ 3(13}

(i) 0={(0,0,0,0,0,...)} = ai,a2,a3
a; =2a2+3a3 =0=2-043-0

=0eW.

(ii)
= (x1,T2,23++ ,Tn) = x1 = 2x2 + 323

y=(¥1,¥2,¥3 " ,Yn) = y1 = 2y2 + 3y3

T—Y=2T1—Y1,T2— Y2, Tn —Yn = 21 — Y1 = 2(x2 —y2) + 3(x3 — y3)
T—y=(Fr,Fpr - Fx) = Fr=2Fg

For subspace:
OweW, z—yeW

Va € F, ar € W where W satisfies.
a€R, z = (z1,22,23...2,) and
xr1 = 2x9 + 373
= axr1 = 2ax2 + 3axs
= 1 = 22 + 323

. W1 is a subspace of V.

12 Subspaces in Vector Spaces

Let V be a vector space over a field F, and let W1 and W2 be subspaces of V.

r+yorzxr—y € wrUuws

Let x,y € W1 N Wa:
x:(O _Ol)ewlngUWz,

y=(o 1) emyemm,

n
Zamj =0.
j=1
Let
m n
Wy = { (aij) eV ‘ Zzaij —0}.
i=1j=1

For j =1,2,...,n, we have:

Then, W; and W5 are subspaces over V = Fmx",

12



12.1 Conditions

i) W1 CWh
ii) Wo CW;
iii) WiNWsy = {0}

12.2 Sum of Two Subspaces

Let V(F') be any vector space, and suppose Wi and Wa are subspaces of V.

Then the set ,
Wi+ We={x+y|xeW,yecWs}

This is called the sum of W; and Wa.

12.3 Theorem

Let V(F') be any vector space, and let W1, Wa be subspaces of V.

i) W1 4+ Wa is a subspace of V.
ii) Wy C Wy + Wa, Wo C Wy + Wa.
iii) If W is a subspace of V such that W3 C W and Wy C W,

then W1 + Wy C W.
From this, we can say that W; + Wy is the smallest subspace which contains both the subspaces W7 and Wa.

Thus, W1 + Wa is the smallest subspace containing both W1 and Wa.
Proof:

1.
Wi+ We={x+y|xzeW,ye W}

(i)OEWl,OGWQ
0=04+0eW; +Wy — 0€ W1 + Ws

(ii) Let o, B €F, we Wi + Wa.
To show: au + fv € W1 + Wa.

Now
u==1x1+y1, r1 € Wi, y1 € Wa and v=1x2+y2, x2 € W1, y2 € Wa.
Now,
ou+ Bv = oz +y1)+ B(z2 +y2) = ax1 + Bx2 + ay1 + By2
Since

au+ fv € W1 + Wy =— Wjp 4+ Ws is a subspace.

(2.) Let . € Wy
z = z(€ W1) + 0(€ W2) € W1 + Wa,

ceW+Wo = |W C Wy +Wa |

Let y € Wa
0+y=yeW+ Wy,

yeWr+ Wy = |Wa C W +Wa |

(3.) Let W be a subspace of V and Wi, Wa C W. Then let
z € Wi + Wa,
z=x+y, €W, yeWs.

Now
reWLCW = ze€W, yeWa CW = yecW,

13



z=x+y = z€W.

Wi+We CW |

Wi + Wa W1, Wa
(smallest subspace) (subspaces of W)

Ex: V = R2*2

13 Direct Sum of Two Subspaces

Let V(F) be any vector space, and let Wi, Ws be two subspaces of V. Then we say 'V’ is a direct sum of W; and W3, and we
write:

V=W e&Ws;

If: (i) V=Wi1+ Wy (e, V€V = z=u+v,u € Wi,w € Wa)

(ii) WinNnWsy = {0}

Ex: Let V =R2 = {(a,b) | a,b € R}
W1 ={(a,0) | a € R},
W2 ={(0,b) | b € R}

Now,
vV (z,y) € R?,
= (z,y) = (z,0) + (0,9), where (z,0) € W1 and(0,y) € W2

= RZ =W, + W

Now,
(x,y)erﬁWQ
= (z,y) € W1 & (z,y) € W
= y=0&x=0
= (z,9) =(0,0)
= Win Wy ={(0,0)}
— R2=W1 @& W>

Definition:

Let P, (F) denote the space of all polynomials of degree at most n over F. i.e.,

Pn(f):{a0+a1m+a2m2+---+anx" | ag,ai,...,an € F}

Ex:
Pl(R) = {ao +a1x | ap,a1 € R}
P>(R) = {ao + a1z + asz? | ag,a1,a2 € R}

Py(R) = {ap + a1z + a22? | ag,a1,az € R}
Wi = {c+da? | c,d € R},
Wy ={ex | e € R}

14



13.1 Verify (i) W, and W, are subspaces (Home-work):

V'V e PR)
— V = a0+a1x+a2x2
V = (ao + agxz) + a1z

— PBR=W;+ W,

ao+a1x+a2x2 c Wi N Wy
— ao+a1$+a2$26W1 &ao+a1$+a2m26WQ
— a1 =0& ap=0,a2 =0
= ap=a1 =a2 =0
- a0+a1x+a2x2:0+0.x+0.x2
— WinWa={0} = P2(R) = W1 & W2

W1 = {c+dz?|c,d € R}

Wy = {ex | e € R}
Let
r1 =a+bx? and y:c—f—de
a,BeF
ax + By = a(a + bz?) + B(c + da?)
= (aa + fBc) + (ab + Bd)z? € Wy
= W is a subspace of P>(R)

Wy = {ex | e € R}
r=exr and y= fz
a,BeF
ar + By = aex + Bex
= (ea+ Be)x € Wo
= Wh> is a subspace of P>(R)

Theorem:

Let V(F) be a V.S. and W1, Wa be subspaces of V.

Then V=W, @& Wy <= Va € V, x = u + v, for unique vectors u € Wi, v € Wa.

Example:

R? = {(z1,22) | 1,22 € R}

Wi = {(z1,0) | z1 € R}

Wa = {(0,z2) | z2 € R}

R2 = W1 @ Wa
Y(z1,x2) € R?
(CC1,$2) = ('7:170) + (0,$2)

(1,3) =(1,0) + (0,3)

Definition: For Direct Sum:

V=W oW ®dWs

15



i.Wy, Wy, W3 are subspaces of V'
iV =W +Wo +Ws, ie, Ve eV, z=us +u2 +us, us € W, i=1,2,3
iii.W1 N Wy = {0}, (W + Wa) N W3 = {0}

V=W oW oWz ---®& Wy

i.Wy, Way, ..., W, are subspaces of V'
HV=wi+Ws+. .-+ Wy
(Wi +Wa+ -+ W,_1)NW; ={0}, Vi=1,2,3,...,n

14 Quotient Space

Let V(F') be any vector space, and let W be a subspace of V. Define a relation ”~” on V as:

For a,b eV,

a~b <<= a—-beW

Then, ~ is an equivalence relation.

14.1 Equivalence Classes
z={yeV|y~a}l={yeV]|y-—zeW}
Equivalence class of x:

z={yeV|iy—-z=w,weW}t={y=a+w, we W}
Z={z+W|weW} )

Now: _
a=b <<= a~b
<< a—-beW
ie.a+W=b+W
— a—-beWw
Note: ~
a=0
<= a+W=0+W=W
<~ a~0
<< a—0eW
— aeW )

Now, let V(F') be any vector space and W be a subspace of V. Then the set
1%

— ={z= WilzeV
={a=atWlaeV)

is a vector space over F'.

==

14.2 Operations in

1. **Vector addition**:

2. **Scalar multiplication**:

(az)+ W

16



3. **Zero vector**:

Thus, 0 + W is the zero vector.
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15 Linear Combination

Let V(F') be a vector space and W be a subspace, and

X1,X2,X3,...,Xx €V and aj,a2,...,a € F.
Then,
X =oa1X] +asxa + -+ apxg €V
is called a linear combination of x1,x2,...,Xk.
x is the Linear Combination of x1,x2,x3,...,Xg

Example 1:

Let V =R3, F = R. Consider,
x1 = (1,0,0), x2 =(0,1,1), x3=(0,0,1).
Let u = a1x1 + agx2 + asxs. Then,
=a1(1,0,0) + a2(0,1,1) + a3(0,0,1)
= (a1,0,0) + (0, a2, a2) + (0,0, a3)

= (a1, a2,a2 + as).

For a1 =1, o = 0,3 = 1, we get:

(1,0,0+1) = (1,0,1).
Thus, x is a linear combination of x1, X2, X3.

Example 2:

Let V = R3, F = R. Consider,
d; =(1,0,1), d2=(0,1,1).
Let u = (1,2, 3). Check if u is a linear combination of d; and dz. Assume:
u = a1d; + aosds.
Then,
(1,2,3) = 01 (1,0,1) + a2(0,1,1)
(a1,0,a1) + (0, a2, a2)

= (a1, 02,01 + a2).

Equating components:
ap =1,
ag =2,
a1 + az = 3.

However, 1 + 3 # 2. Hence, u is not a linear combination of d; and ds.

16 Linear Span

Let V(F') be a vector space, and let S be any non-empty subset of V. Then we define the linear span of S by L(S) or Span(S) or
(S). Tt is defined as:
L(S)={u|u=a1vi +aava + -+ agVvg, a; € F,v; € S,and k is finite}.
If S =0, then L(S) = {0}.
L(S) = Set of all linear combinations of elements of S.

16.1 Examples.

Example 1

Let S ={(1,1,0),(0,1,1)} CR3, F = R. Then,
L(S) = {a1(1,1,0) + a2(0,1,1) | 1,02 € R}
={(c1,1,0+0,2,0a2) | a1, a2 € R}. ={(a1,1 + a2, a2) | a1, a0 € R}.
Thus, L(S) is the set of all linear combinations of {(1,1,0), (0,1,1)}.
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Example 2:

Let V = R2X3 F = R. Consider,
Find L(S).

Solution:

‘We have,

1 0 O 1 1 0
) | a1, 2, a3 E]R},

Expanding, we get:
L(S) = {(oq +az az+az

a1 a1
Thus, L(S) is the set of all matrices of the form

al a2 a2+ a3
%1 aq

where a1, a2, a3 € R.

16.2 Properties of Linear Span

1.Let V(F') be any vector space and S C V. Then:

1. L(S) is a subspace of V.
2. S CL(S).
3. If W is a subspace of V such that S C W, then L(S) C W.

—

(=

1
0) | a1, 2,3 € R}.

[ L(S) is the smallest subspace of V that contains S.

2. Let L(S) = S. Then S is a subspace of V.
Proof:
Forward: Let L(S) = S. Then S is a subspace.
Converse: Let S be a subspace. Also, S C S. Thus, L(S) = S.
3. If 51,52 C V, then:
L(S1US2) = L(S1) + L(S2).
4. S1 €S2 CV then:
L(S1) € L(S2)

5. L(L(S))=L(S)

Illustration:
Let V = R2,
S1={(1,0)},
S2 = {(0,1)}.
Then,
L(S1) ={a1(1,0) | a1 € R} = {(@1,0) | a1 € R},
L(S2) ={a2(0,1) | a2 € R} = {(0, a2) | a2 € R},
L(S1 USQ) = {al(l,o) =+ ag(o,l) | a1, 0 € R}
:’ {(al,ag) ‘ aq,02 € R}. ‘
Also,

L(S1) + L(S2) = {(a1,0) + (0, a2) | a1,2 € R}

= {(al,ozg) | a1, € R}.
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Linearly Dependent Set

Let V(F') be a vector space, and S C V, we say that S is linearly dependent over F'

such that

ie.,, Juy,u2,...,ux €5
such that the equation

has at least one non-zero solution.

Example.Let V = R3(R),
S =1{(1,1,2),(2,4,2),(3,0,1)}

up = (17271)7
u2 = (2)472)7
a; = —2#0,
ar=1#0

—> S is linearly dependent.

If there exist ui,us,...,u; € S

and ay,a2,...,ap € F

a1ul + aguz + -+ - + agur, =0 (zero vector)

ajul +aguz + - +agup =0

Check whether S = {(1,2,1),(2,4,2),(3,0,1)} is L.D.?

Solution:

Consider matrix:

Row reduce:

Thus, S is linearly dependent.

aiul + asus + aguz =0 — (0, 0, 0)

N DN
= o Ww

Ry — R2 —2R1, R3 — R3 — Ri

1 2 3
0 0 -6
0 0 -2
R,
Ry = —>, R3— —
—2
1 2 3
0 0 1
0 0 1

Let x1 = 229, x2 =a3

= a1 =2a2, az+ a3z =0

20

(not all zero)

—-2-(1,2,1)+1-(2,4,2) = (—-2,-4,-2) + (2,4,2) = (0,0,0)

i.e. 3 at least one a; # 0



17 Linear Independence and Dependence

Let V(F') be any vector space, and S C V(F), then
S is said to be linearly independent if S is not linearly dependent.

ie. Yui,ug,...,up €S, aiuil +aguz+ -+ apur =0

== a1 =az=az3=---=qa =0

17.1 Linear dependence and linear independence of finite set

Let V(F') be any vector space and
S ={ur,u2,u3,...,un} CV

Then S is linearly independent if:

= ‘a1U1+a2u2+~~~+akuk:0‘

‘ﬁ 041:042:~-~:ock:0‘

Example

Let V = R3(R)

S={z+1,z+22 2% +23}

Consider:
ajul + agug + asuz =0 = 0+ Oz + 0z2 + 023

= ai(z+1)+ sz +z2) + az(z? + 2%) = 0+ 0z + 022 + 02>

a1 + (a2 + a3)x2 + a3m3) =0+ Oz + 022 + 02>

— a1 + a2+ 2a3 =0, a2t+a31220x+0x2

a1 =0, a1+a3=0, H4az+az3 =0

a; =0,a2 =0,a3 =0

.. S is linearly independent.
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