Linear Vector Spaces

Arpit Trivedi

MLS01

Madhava Lecture Series, Theoretical Nexus

Arpit Trivedi while Lecture

Contents

1	Motivation to Vector Spaces	2
	1.1 Properties of Vector Spaces	2
2	What is Field?	2
3	Vector Spaces	4
4	Properties of Vector Space	4
5	Subspace of a Vector Space	5
	5.1 Subspace Test-1	5
	5.2 Sub-field of a Field	5
6	Space of n -Tuples	7
7	Space of Matrices	7
8	Space of Polynomials	8
9	Space of Functions	9
10	Space of Sequence	10
11	Properties of Subspaces	10
12	Subspaces in Vector Spaces	12
	12.1 Conditions	13
	12.2 Sum of Two Subspaces	13
	12.3 Theorem	13
13	S Direct Sum of Two Subspaces	14
	13.1 Verify (i) W_1 and W_2 are subspaces (Home-work):	15
14	Quotient Space	16
	14.1 Equivalence Classes	16
	14.2 Operations in $\frac{V}{W}$:	16
15	Linear Combination	18
16	Linear Span	18
	16.1 Examples	18
	16.2 Properties of Linear Span	19
17	Linear Independence and Dependence	21
	17.1 Linear dependence and linear independence of finite set	21

1 Motivation to Vector Spaces

Review 12th Class

Let the vectors be:

$$\vec{a} = a_1 \hat{i} + a_2 \hat{j}$$
$$\vec{b} = b_1 \hat{i} + b_2 \hat{j}$$

Vector Addition

$$\vec{a} + \vec{b} = (a_1 + b_1)\hat{i} + (a_2 + b_2)\hat{j}$$

Scalar Multiplication

If $\alpha \in \mathbb{R}$, then:

$$\alpha \vec{a} = \alpha a_1 \hat{i} + \alpha a_2 \hat{j}$$

For example, let $\vec{a} = 2\hat{i} + 4\hat{j}$ and $\alpha = 3$. Then:

$$\alpha \vec{a} = 6\hat{i} + 12\hat{j}$$

1.1 Properties of Vector Spaces

- 1. Commutativity: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$
- 2. Associativity of Addition: $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$
- 3. Existence of Zero Vector: There exists a zero vector $\vec{0} = 0\hat{i} + 0\hat{j}$ such that:

$$\vec{a} + \vec{0} = \vec{a}$$
 and $\vec{b} = \vec{0}$

4. Existence of Additive Inverse: For all vectors $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, there exists $-\vec{a} = (-a_1)\hat{i} + (-a_2)\hat{j} + (-a_3)\hat{k}$ such that:

$$\vec{a} + (-\vec{a}) = 0\hat{i} + 0\hat{j} + 0\hat{k} = \vec{0}$$

- 5. Distributivity of Scalar Multiplication: $\alpha(\vec{a} + \vec{b}) = \alpha \vec{a} + \alpha \vec{b}$
- 6. Distributivity over Scalars: $(\alpha + \beta)\vec{a} = \alpha \vec{a} + \beta \vec{a}$
- 7. Associativity of Scalars: $(\alpha \beta)\vec{a} = \alpha(\beta \vec{a})$
- 8. Multiplicative Identity: $1 \cdot \vec{a} = 1a_1\hat{i} + 1a_2\hat{j} = \vec{a}$

2 What is Field?

A non-empty set F together with two binary operations + (called addition), \cdot (called multiplication) is said to be a field if the following conditions are satisfied:

1. $a+b=b+a \quad \forall a,b \in F$

{Commutativity of Addition}

 $2. \ a \cdot b = b \cdot a \quad \forall \, a, b \in F$

{Commutativity of Multiplication}

3. $\forall a, b, c \in F$:

 $(a+b)+c=a+(b+c)\{Associativity of Addition\}$

2

4. Existence of addition and multiplicative identity:

- $\exists \, 0 \in F \text{ such that } a + 0 = a \quad \forall \, a \in F$
- $\exists 1 \in F$ such that $a \cdot 1 = a \quad \forall a \in F$

5. Existence of additive and multiplicative inverses:

- $\forall a \in F, \exists b \in F \text{ such that } a + b = 0$
- $\forall a \in F, a \neq 0, \exists b \in F \text{ such that } a \cdot b = 1$
- 6. Distributivity:

$$\begin{aligned} a\cdot(b+c) &= ab + ac\\ (a+b)\cdot c &= ac + bc \quad \forall\, a,b,c \in F \end{aligned}$$

(Note: b is denoted by -a)

(Note: b is denoted by a^{-1})

Note: Closure property holds for all operations.

Example of Finite Field

Ex: Let p be prime.

$$\mathbb{Z}_p = \{0, 1, 2, 3, \dots, p-1\}$$

and binary operation:

1. a+b= least non-negative remainder when a+b is divided by p.

$$(a+b) = (a+b) \bmod p$$

2. ab = least non-negative remainder when ab is divided by p.

$$ab=(ab) \bmod p$$

$$(\mathbb{Z}_p, +, \cdot)$$
 is a field.

Note: p is prime.

Fields

- $(\mathbb{R}, +, \cdot)$
- $(\mathbb{Q}, +, \cdot)$
- $(\mathbb{Z}_p, +, \cdot)$ where p is prime
- $(\mathbb{Z}_3, +, \cdot)$ where $\mathbb{Z}_3 = \{0, 1, 2\}$

Example: $(\mathbb{Z}_3, +, \cdot)$ where p = 3.

• Addition table:

• Multiplication table:

Note: In \mathbb{Z}_p ,

$$a+b=(a+b) \bmod p, \quad ab=(ab) \bmod p.$$

3 Vector Spaces

Let F be any field, and V be a non-empty set. We say that $V(\mathbb{F})$ is a **vector space over** F if we can define operations:

- 1. **Vector Addition:** Denoted by $+: \forall u, v \in V, u + v \in V$ (unique element).
- 2. Scalar Multiplication: $\forall \alpha \in F, \forall v \in V, \alpha \cdot v \in V \text{ (unique element)}.$

Such that the following conditions are satisfied:

- (A1) $u + v = v + u \quad \forall u, v \in \mathbb{V}.$
- (A2) $(u+v)+w=u+(v+w) \quad \forall u,v,w \in \mathbb{V}.$
- (A3) $\exists 0 \in V \text{ such that } u + 0 = u \quad \forall u \in \mathbb{V}.$
- $\begin{array}{ll} \text{(A4)} \ \, \forall u \in \mathbb{V}, \, \exists \, y \in \mathbb{V} \text{ such that } u+y=0. \\ \text{(Note: } y \text{ is denoted by } -u). \end{array}$
- (S1) $\alpha \cdot (u+v) = \alpha \cdot u + \alpha \cdot v \quad \forall \alpha \in \mathbb{F}, u, v \in \mathbb{V}.$
- (S2) $(\alpha + \beta) \cdot v = \alpha \cdot v + \beta \cdot v \quad \forall \alpha, \beta \in \mathbb{F}, v \in \mathbb{V}.$
- (S3) $(\alpha\beta) \cdot v = \alpha \cdot (\beta \cdot v) \quad \forall \alpha, \beta \in \mathbb{F}, v \in \mathbb{V}.$
- (S4) $1 \cdot v = v \quad \forall v \in \mathbb{V}.$

Important Notes

- $V(\mathbb{F})$ is a vector space over \mathbb{F} . We write $V(\mathbb{F})$ as a vector space.
- If $V(\mathbb{F})$ is a vector space, then elements of V are called **vectors**, and elements of \mathbb{F} are called **scalars**.

4 Properties of Vector Space

If $V(\mathbb{F})$ is a vector space:

- 1. $0 \cdot v = 0 \quad \forall v \in \mathbb{V}$.
- $2. \ \alpha \cdot 0 = 0 \quad \forall \alpha \in \mathbb{F}.$
- $3. \ \ (-\alpha) \cdot v = -(\alpha \cdot v) \quad \forall \alpha \in \mathbb{F}, \, v \in \mathbb{V}.$
- 4. $\alpha \cdot (-v) = -(\alpha \cdot v) \quad \forall \alpha \in \mathbb{F}, v \in \mathbb{V}.$
- 5. $(-\alpha) \cdot (-v) = \alpha \cdot v \quad \forall \alpha \in \mathbb{F}, v \in \mathbb{V}.$

Key Points

- $V(\mathbb{F})$ is a vector space if:
 - \mathbb{V} is a non-empty set.
 - $-\mathbb{F}$ is a field.
 - There exists unique operations (vector addition and scalar multiplication) sat-isfying all axioms.
- \bullet Every field $\mathbb F$ is a vector space over itself.

5 Subspace of a Vector Space

Let $V(\mathbb{F})$ be any vector space, and W be a non-empty subset of V. Then W is said to be a **subspace** of V if:

- $1. \ 0 \in W \qquad \quad (\textit{Zero element of V is in W}).$
- $2. \ u,v \in W \implies u+v \in W.$
- 3. $u \in W \implies -u \in W$.
- $4. \ \alpha \in F, u \in W \implies \alpha u \in W.$

Example

Let $V = \mathbb{R}^3$ (i.e., $\{(x_1, x_2, x_3) : x_1, x_2, x_3 \in \mathbb{R}\}$) and $F = \mathbb{R}$. Define:

$$W = \{(a, 0, a) : a \in \mathbb{R}\}$$

- Vector Addition: $(a_1, 0, a_1) + (a_2, 0, a_2) = (a_1 + a_2, 0, a_1 + a_2).$
- Scalar Multiplication: $\alpha(a,0,a) = (\alpha a, 0, \alpha a)$.

Since $V(\mathbb{F})$ is a vector space, from (i), (ii), (iii), and (iv), W is a subspace of \mathbb{V} .

Vector spaces are subspaces of fields (some field \mathbb{F}).

Result

If $V(\mathbb{F})$ is a vector space and $\phi \neq W \subseteq V$, then W is a subspace of \mathbb{V} if and only if:

1. W is a vector space w.r.t. vector addition and scalar multiplication that $\operatorname{make}V(\mathbb{F})$ a vector space.

5.1 Subspace Test-1

Let $V(\mathbb{F})$ be a vector space, and $\phi \neq W \subseteq V$. Then W is a subspace of V if and only if:

- $1. \ x,y \in W \implies x+y \in W.$
- $2. \ \alpha x \in W \quad \forall \alpha \in F, x \in W.$

5.2 Sub-field of a Field

Let $\mathbb F$ be any field, and K a non-empty subset of $\mathbb F$. $\mathbb F$ is said to be a **sub-field** of $\mathbb F$ if:

- $\bullet \ \, \forall \,\, a,b \in K \implies a-b \in K.$
- $\bullet \ \forall \ a,b \in K, b \neq 0 \implies a.b^{-1} \in K.$

Example

$$\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}\$$

1. Let $x = a_1 + b_1\sqrt{2}$ and $y = a_2 + b_2\sqrt{2}$.

$$x - y = (a_1 - a_2) + (b_1 - b_2)\sqrt{2} \in \mathbb{Q}(\sqrt{2})$$
 (since $a_1 - a_2 \in \mathbb{Q}$ and $b_1 - b_2 \in \mathbb{Q}$).

2. If $y \neq 0 \implies a_2 \neq 0$ or $b_2 \neq 0$, then:

$$\frac{x}{y} = \frac{a_1 + b_1\sqrt{2}}{a_2 + b_2\sqrt{2}} \times \frac{a_2 - b_2\sqrt{2}}{a_2 - b_2\sqrt{2}}$$

Simplifying:

$$\frac{x}{y} = \frac{(a_1a_2 - b_1b_2) + \sqrt{2}(a_2b_1 - b_2a_1)}{a_2^2 - 2b_2^2} \in \mathbb{Q}(\sqrt{2}).$$

- $\mathbb{Q}\sqrt{2}$ is sub-field of $\mathbb{Q}\sqrt{2}$.
- $\mathbb{Q}\sqrt{2}$ is sub-field of $\mathbb{Q}(i)$.
- \mathbb{Q} is sub-field of \mathbb{R} .
- $\mathbb{Q}\sqrt{2}$ is sub-field of \mathbb{R} .
- $\mathbb{R}, \mathbb{Q}, \mathbb{Q}\sqrt{2}$ is sub-field of \mathbb{C} .
- $\mathbb{Q}(i)$ is sub-field of \mathbb{C} .

6 Space of *n*-Tuples

Let $\mathbb F$ be any field and k be a sub-field of $\mathbb F$. Define:

$$V = F^n = \{(a_1, a_2, a_3, \dots, a_n) \mid a_1, a_2, \dots, a_n \in F\}.$$

Then V(F) is a vector space if:

1. Vector Addition:

$$(a_1, a_2, \dots, a_n) + (b_1, b_2, \dots, b_n) = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n).$$

2. Scalar Multiplication:

$$\alpha \in k$$
, $\alpha(a_1, a_2, \dots, a_n) = (\alpha a_1, \alpha a_2, \dots, \alpha a_n)$.

3. Zero Vector:

$$O = (0, 0, 0, \dots, 0).$$

Examples:

- $F = \mathbb{R}, k = \mathbb{R}$
 - $-\mathbb{R}^n(\mathbb{R})$ is a vector space.
 - * $\mathbb{R}^1(\mathbb{R})$ is a vector space.
 - * $\mathbb{R}^2(\mathbb{R})$ is a vector space.
 - * $\mathbb{R}^3(\mathbb{R})$ is a vector space., ...

$$- \mathbb{R}^n = \{ (a_1, a_2, a_3, \dots, a_n) \mid a_1, a_2, a_3, \dots, a_n \in \mathbb{R} \}.$$

- * $\mathbb{R}^2 = \{(a_1, a_2) \mid a_1, a_2 \in \mathbb{R}\}.$
- * $\mathbb{R}^3 = \{(a_1, a_2, a_3) \mid a_1, a_2, a_3 \in \mathbb{R}\}.$
- * $\mathbb{R}^4 = \{(a_1, a_2, a_3, a_4) \mid a_1, a_2, a_3, a_4 \in \mathbb{R}\}.$
- $F = \mathbb{C}, k = \mathbb{C}$:
 - $\mathbb{C}^n(\mathbb{C})$ is a vector space.
 - $\mathbb{C}(\mathbb{C})$ is a vector space.
 - $\mathbb{C}^{2}(\mathbb{C})$ is a vector space.
- $F = \mathbb{C}, k = \mathbb{R}$:
- $F = \mathbb{C}, k = \mathbb{Q}$:

7 Space of Matrices

Let $\mathbb F$ be any field and k be a sub-field of $\mathbb F.$ Define:

$$V = F^{m \times n} = \{ A = (a_{ij})_{m \times n} \mid a_{ij} \in F \quad \forall i = 1, 2, \dots, m, \ j = 1, 2, \dots, n \}.$$

Then V is a vector space over k, w.r.t.:

1. Vector Addition:

$$(a_{ij})_{m\times n} + (b_{ij})_{m\times n} = (a_{ij} + b_{ij})_{m\times n}.$$

2. Scalar Multiplication:

$$\alpha(a_{ij})_{m\times n} = (\alpha a_{ij})_{m\times n}.$$

3. Zero Matrix:

$$O = (0)_{m \times n}.$$

Note

- $\mathbb{C} = \{a + ib \mid a, b \in \mathbb{R}\}\$
- $\mathbb{C}^2 = \{(a_1, b_1), (a_2, b_2) \mid a_1, b_1, a_2, b_2 \in \mathbb{F}\}$
- $\mathbb{C}^2 = \{(a_1 + ib_1, a_2 + ib_2) \mid a_1, a_2 \in \mathbb{R}, b_1, b_2 \in \mathbb{R}\}$
- $\mathbb{C}^3 = \{(a_1, b_1), (a_2, b_2), (a_3, b_3) \mid a_1, b_1, a_2, b_2, a_3, b_3 \in \mathbb{F}\}\$
- $\mathbb{C}^3 = \{(a_1 + ib_1, a_2 + ib_2, a_3 + ib_3) \mid a_1, a_2, a_3 \in \mathbb{R}, b_1, b_2, b_3 \in \mathbb{R}\}$
- $\mathbb{C}^2(\mathbb{Q}[\sqrt{2}])$ or $(a+b\sqrt{2},a_1+b_1\sqrt{2})$ $(a_2+b_2\sqrt{2})$

8 Space of Polynomials

Let \mathbb{F} be any field, and k be a sub-field of F. Define

$$F[x] = \{a_0 + a_1t + a_2t^2 + \dots\}$$
 where $a_0, a_1, a_2, \dots \in F$ and all $a_i = 0$ except finitely many.

For (1 + x),

$$f(t) = 1 + x + a_2 x^2 + a_3 x^3 + \dots$$
 where $a_i = 0$ and $i = 1, 2, 3 \dots$

Polynomial is eventually zero sequences. $(a_1, a_2, a_3, \ldots, a_n)$

Then F[x] is a vector space over k, w.r.t:

1. Vector Addition:

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3,$$

$$g(x) = b_0 + b_1 x + b_2 x^2 + b_3 x^3$$

$$\implies f(x) + g(x) = (a_0 + b_0)x + (a_1 + b_1)x^2 + (a_2 + b_2)x^2 + \dots$$

2. Scalar Multiplication:

$$\alpha f(x) = \alpha a_0 x + \alpha a_1 x^2 + \alpha a_2 x^3 + \dots$$

3. Zero Vector: Zero Polynomial

$$O(x) = 0 + 0x + 0x^2 + 0x^3 + \dots$$

Note: Zero polynomial of degree is not defined. Some say that its degree is -1.]

Examples

- $F = \mathbb{R}, \ k = \mathbb{R}$
 - $-\mathbb{R}(x)(\mathbb{R})$ is a Vector Space
- $F = \mathbb{R}, \ k = \mathbb{Q}$
 - $\mathbb{R}(x)(\mathbb{Q})$ is a Vector Space
- $F = \mathbb{R}, \ k = \mathbb{Q}(\sqrt{2})$
 - $-\mathbb{R}(x)(\mathbb{Q}(\sqrt{2}))$ is a Vector Space.
- $\bullet \ \ F=\mathbb{Q}, \ k=\mathbb{Q}$
 - $-\mathbb{Q}(x)(\mathbb{Q})$ is a Vector Space
- $\bullet \ \ F=\mathbb{Q}[\sqrt{2}], \ k=\mathbb{Q}$
 - $-\mathbb{Q}\sqrt{2}(x)(\mathbb{Q})$ is a Vector Space.
- $F = \mathbb{C} \ k = \mathbb{R}$
 - $-\mathbb{C}(x)(\mathbb{R})$ is a Vector Space.
 - $\mathbf{Also},$
 - $\mathbb{C}(x)(\mathbb{Q})$ is a Vector Space
 - $-\mathbb{C}(x)(\mathbb{Q}\sqrt{2})$ is a Vector Space.
 - $\mathbb{C}(x)(\mathbb{Q})(i)$ is a Vector Space.
 - $\mathbb{C}(x)(\mathbb{C})$ is a Vector Space.

9 Space of Functions

Let F be any field, and k be a sub-field of F. Suppose $S \neq \phi$. Define

$$F^S = \{f \mid f: S \to F\} \quad \text{(collection of all functions from S to F)}.$$

Then F^S is a vector space over k, w.r.t:

1. Vector Addition: For $f, g \in \mathbb{V}$,

$$(f+g)(s) = f(s) + g(s) \quad \forall \ s \in S$$

(Addition f + g is field addition).

2. Scalar Multiplication: For $\alpha \in k$, $f \in V$,

$$(\alpha f)(s) = \alpha f(s) \quad \forall \ s \in S$$

3. **Zero Vector:** Zero function:

$$O:S\to F\quad \text{such that}\quad O(s)=0\quad\forall\,s\in S$$

$$f(0)(s)=f(s)+0(s)=f(s)+0=f(s)\implies f+0=f$$

Example: Let $S = \{u, v\}, F = \mathbb{Z}_2 = \{0, 1\}.$

$$F^{S} = \{f \mid f : S \to \mathbb{Z}_{2}\}$$

$$F^{S} = \{O, f, g, h\}$$

$$f(u) = 0, f(v) = 1,$$

$$g(u) = 1, g(v) = 0$$

$$h(u) = 1, h(v) = 1$$

 $\mathbb{F}^{S}(\mathbb{F})$ is a vector space.

Note: Two functions f and g are equal if their domain and co-domain are equal, also their value on each point is also equal.

10 Space of Sequence

Let F be any field, and k be a sub-field of F. Define

$$V = F^{\infty} = \{ \langle a_n \rangle \mid a_n \in F, \ \forall \ n \in \mathbb{N} \}$$

$$\langle a_n \rangle = \langle a_1, a_2, a_3, a_4, a_5, \dots \rangle$$

Then $\mathbb {V}$ is a vector space over k w.r.t:

1. Vector Addition:

 $\langle a_n \rangle + \langle b_n \rangle = \langle a_n + b_n \rangle$

2. Scalar Multiplication:

$$\alpha \cdot \langle a_n \rangle = \langle \alpha a_n \rangle$$

 $\forall \ \alpha \in K$

3. Zero Vector:

$$\langle 0 \rangle = \langle 0, 0, 0, 0, 0, \dots \rangle$$

$$\mathbf{F} = \mathbb{R}, \quad \mathbf{k} = \mathbb{R}$$

$$F^{\infty} = \{ \langle a_n \rangle = \langle a_1, a_2, a_3, a_4, \dots \rangle \mid a_1, a_2, \dots \in \mathbb{R} \}$$

Examples:

$$\begin{split} &\langle 1,1,1,1,1,\ldots\rangle \\ &\langle 2,2,1,2,1,2,\ldots\rangle \\ &\langle \frac{1}{2},\frac{1}{2},\ldots\rangle \\ &\langle 1,\frac{1}{2},\frac{1}{3},\ldots\rangle \\ &\langle 0,0,0,0,0,\ldots\rangle \end{split}$$

Operations:

$$\langle a_n \rangle = \langle a_1, a_2, a_3, \dots \rangle$$

$$\langle b_n \rangle = \langle b_1, b_2, b_3, \dots \rangle$$

$$\langle a_n \rangle + \langle b_n \rangle = \langle a_1 + b_1, a_2 + b_2, a_3 + b_3, \dots \rangle$$

$$\alpha \langle a_n \rangle = \langle \alpha a_1, \alpha a_2, \alpha a_3, \dots \rangle$$

Example with zero vector:

$$\langle a_n \rangle + \langle 0 \rangle = \langle a_1, a_2, a_3, \dots \rangle + \langle 0, 0, 0, \dots \rangle$$
$$= \langle a_1 + 0, a_2 + 0, a_3 + 0, \dots \rangle$$
$$= \langle a_1, a_2, a_3, \dots \rangle$$

11 Properties of Subspaces

#1. Let $\mathbb{V}(F)$ be a vector space, then $W = \{0\}$ is a subspace of V.

- $1. \ \ 0 \in V$
- 2. Let any $x, y \in W$, so x = y = 0

$$\Rightarrow x - y = 0 - 0 = 0 \in W$$

- 3. $\alpha \in F$, $x \in W \Rightarrow \alpha \cdot 0 = 0 \in W$
- #2. If V(F) is a vector space, then V is a subspace of itself.

Note: $\{0\}$ is called the **trivial subspace** of V.

- 1. Any subspace other than $\{0\}$ is called a **non-trivial subspace**.
- 2. If W is a subspace of V and $W \neq V$, then W is called a **proper subspace** of V.

$$V = \mathbb{R}^2 = \{(a, b) \mid a, b \in \mathbb{R}\}$$
$$W = \{(x, 0) \mid x \in \mathbb{R}\} \neq \{(0, 0)\}$$

Then W is a subspace of V. Also, $W \neq V \Rightarrow W$ is a proper subspace of V.

#3. If W_1, W_2, \ldots, W_n are subspaces of V(F), then

$$W_1 \cap W_2 \cap W_3 \cap \cdots \cap W_n$$

is also a subspace of \mathbb{V} .

Proof: Let $x, y \in W_1 \cap W_2 \cap \cdots \cap W_n$ and $\alpha, \beta \in F$.

$$\Rightarrow x,y \in W_i \quad \forall i=1,2,3,\ldots,n$$

$$\Rightarrow \alpha x + \beta y \in W_i \quad \forall i=1,2,\ldots,n \text{ (since } W_i \text{ is a subspace)}$$

$$\Rightarrow \alpha x + \beta y \in W_1 \cap W_2 \cap \cdots \cap W_n$$

$$\Rightarrow W_1 \cap W_2 \cap \cdots \cap W_n \text{ is a subspace.}$$

#4. Union of two subspaces need not be a subspace.

Example: Let $V = \mathbb{R}^2$, $F = \mathbb{R}$.

$$W_1 = \{(x,0) \mid x \in \mathbb{R}\}\$$

$$W_2 = \{(0,y) \mid y \in \mathbb{R}\}\$$

Then W_1 and W_2 both are subspaces. But $W_1 \cup W_2$ need not be a subspace of V.

$$x = (1,0) \in W_1 \subseteq W_1 \cup W_2$$

 $y = (0,1) \in W_2 \subseteq W_1 \cup W_2$

Now

$$x+y=(1,-1)\notin W_1, \notin W_2 \quad \notin W_1\cup W_2$$

#5. Union of two subspaces is a subspace if and only if one of them is contained in the other.

Proof:

$$\Rightarrow$$
 Let $\mathbb{V}(F)$ be a vector space.
 \Rightarrow Let W_1, W_2 be subspaces of V .

To show $W_1 \cup W_2$ is a subspace of \mathbb{V} ,

$$\Leftrightarrow$$
 either $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

Let $W_1 \cup W_2$ be a subspace.

To show: $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

Let if, neither W_1 is contained in W_2 , i.e., $W_1 \nsubseteq W_2$, nor $W_2 \subseteq W_1$.

$$\Rightarrow \exists \ x \in W_1 : x \notin W_2$$
$$\Rightarrow \exists \ y \in W_2 : y \notin W_1$$

Now,

$$x \in W_1 \subseteq W_1 \cup W_2$$
$$y \in W_2 \subset W_1 \cup W_2$$
$$x, y \in W_1 \cup W_2$$

$$\implies x+y \in W_1 \cup W_2 \quad \text{(since $W_1 \cup W_2$ is a subspace)}$$

$$\implies x+y \in W_1 \quad \text{or } x+y \in W_2$$

$$\implies x+y \in W_1, \text{ or } x+y \in W_2$$

$$(x+y)-x \in W_1 \quad \text{or } (x+y)-y \in W_2$$

$$y \in W_1$$
 and $x \in W_2$

This is a contradiction on sign of Shukla Sir.

$$\therefore$$
 Either $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

Converse Part:

Let $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

To show: $W_1 \cup W_2$ is a subspace.

since
$$W_1 \subseteq W_2 \implies W_1 \cup W_2 = W_2$$
 (subspace of V).

& if

$$W_2 \subseteq W_1 \quad \Rightarrow W_2 \cup W_1 = W_1 \quad \text{(subspace of } V\text{)}.$$

Question. Let $V = \mathbb{R}^n = \{(a_1, a_2, \dots, a_n) : a_1, a_2, \dots, a_n \in \mathbb{R}\}$ considered as a vector space over \mathbb{R} . Then which of the following is (are) subspace(s) of V?

(A).
$$W_1 = \{(a_1, a_2, a_3) \in V : a_1 = 2a_2 + 3a_3\}$$

(i)
$$0 = \{(0,0,0,0,0,\ldots)\} \Rightarrow a_1, a_2, a_3$$

$$a_1 = 2a_2 + 3a_3 \quad \Rightarrow 0 = 2 \cdot 0 + 3 \cdot 0$$
$$\Rightarrow 0 \in W.$$

(ii)

$$x = (x_1, x_2, x_3 \cdots, x_n) \implies x_1 = 2x_2 + 3x_3$$

 $y = (y_1, y_2, y_3 \cdots, y_n) \implies y_1 = 2y_2 + 3y_3$

$$x - y = x_1 - y_1, x_2 - y_2, \cdots x_n - y_n \implies x_1 - y_1 = 2(x_2 - y_2) + 3(x_3 - y_3)$$
$$x - y = (\digamma_{\mathbb{K}}, \digamma_{\mathbb{K}} \cdots \digamma_{\mathbb{K}}) \implies \digamma_{\mathbb{K}} = 2\digamma_{\mathbb{K}}$$

For subspace:

$$0_v \in W, \quad x - y \in W$$

$$\forall \alpha \in \mathbb{F}, \ \alpha x \in W \quad \text{where } W \text{ satisfies.}$$

$$\alpha \in \mathbb{R}, \ x = (x_1, x_2, x_3 \dots x_n) \text{ and }$$

$$x_1 = 2x_2 + 3x_3$$

$$\Rightarrow \alpha x_1 = 2\alpha x_2 + 3\alpha x_3$$

$$\Rightarrow x_1 = 2x_2 + 3x_3$$

 $\therefore W_1$ is a subspace of \mathbb{V} .

12 Subspaces in Vector Spaces

Let V be a vector space over a field \mathbb{F} , and let W_1 and W_2 be subspaces of V.

$$x + y$$
 or $x - y \in w_1 \cup w_2$

Let $\mathbf{x}, \mathbf{y} \in W_1 \cap W_2$:

$$\mathbf{x} = \begin{pmatrix} 0 & 0 \\ 1 & -1 \end{pmatrix} \in W_1 \subseteq W_1 \cup W_2,$$

$$\mathbf{y} = \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix} \in W_2, \mathbf{y} \in W_1, W_2.$$

$$\sum_{i=1}^{n} a_{mj} = 0.$$

Let

$$W_2 = \left\{ (a_{ij}) \in V \mid \sum_{i=1}^m \sum_{j=1}^n a_{ij} = 0 \right\}.$$

For j = 1, 2, ..., n, we have:

Then, W_1 and W_2 are subspaces over $V = \mathbb{F}^{m \times n}$.

12.1 Conditions

- i) $W_1 \subseteq W_2$
- ii) $W_2 \subseteq W_1$
- iii) $W_1 \cap W_2 = \{\mathbf{0}\}$

12.2 Sum of Two Subspaces

Let V(F) be any vector space, and suppose W_1 and W_2 are subspaces of V.

Then the set,

$$W_1 + W_2 = \{ \mathbf{x} + \mathbf{y} \mid \mathbf{x} \in W_1, \mathbf{y} \in W_2 \}.$$

This is called the sum of W_1 and W_2 .

12.3 Theorem

Let V(F) be any vector space, and let W_1, W_2 be subspaces of V.

- i) $W_1 + W_2$ is a subspace of V.
- ii) $W_1 \subseteq W_1 + W_2, W_2 \subseteq W_1 + W_2.$
- iii) If W is a subspace of V such that $W_1 \subseteq W$ and $W_2 \subseteq W$,

then
$$W_1 + W_2 \subseteq W$$
.

From this, we can say that $W_1 + W_2$ is the smallest subspace which contains both the subspaces W_1 and W_2 .

Thus, $W_1 + W_2$ is the **smallest subspace** containing both W_1 and W_2 .

Proof:

1.

$$W_1 + W_2 = \{x + y \mid x \in W_1, y \in W_2\}$$

(i) $0 \in W_1, 0 \in W_2$

$$0 = 0 + 0 \in W_1 + W_2 \implies 0 \in W_1 + W_2$$

(ii) Let $\alpha, \beta \in \mathbb{F}$, $u \in W_1 + W_2$.

To show:
$$\alpha u + \beta v \in W_1 + W_2$$
.

Now

$$u=x_1+y_1,\; x_1\in W_1,\; y_1\in W_2\quad \text{and}\quad v=x_2+y_2,\; x_2\in W_1,\; y_2\in W_2.$$

Now,

$$\alpha u + \beta v = \alpha (x_1 + y_1) + \beta (x_2 + y_2) \implies \alpha x_1 + \beta x_2 + \alpha y_1 + \beta y_2$$

Since

$$\alpha u + \beta v \in W_1 + W_2 \implies W_1 + W_2$$
 is a subspace.

(2.) Let $x \in W_1$

$$x = x \in W_1 + 0 \in W_2 \in W_1 + W_2,$$

 $x \in W_1 + W_2 \implies W_1 \subseteq W_1 + W_2$

Let $y \in W_2$

$$0 + y = y \in W_1 + W_2,$$

$$y \in W_1 + W_2 \implies \boxed{W_2 \subseteq W_1 + W_2}.$$

(3.) Let W be a subspace of V and $W_1, W_2 \subseteq W$. Then let

$$z \in W_1 + W_2,$$

 $z = x + y, \ x \in W_1, \ y \in W_2.$

Now

$$x \in W_1 \subseteq W \implies x \in W, \quad y \in W_2 \subseteq W \implies y \in W,$$

$$z = x + y \implies z \in W$$
.

$$W_1 + W_2 \subseteq W$$
.

 $W_1 + W_2$ (smallest subspace)

 W_1, W_2 (subspaces of W)

Ex: $V = \mathbb{R}^{2*2}$

$$W_1 = \left\{ \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix} \middle| x \in \mathbb{R} \right\},$$
$$W_2 = \left\{ \begin{pmatrix} 0 & 0 \\ b & 0 \end{pmatrix} \middle| b \in \mathbb{R} \right\}$$

$$W_1 + W_2 = \left\{ \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \mid x, y \in \mathbb{R} \right\}$$

Direct Sum of Two Subspaces 13

Let $V(\mathbb{F})$ be any vector space, and let W_1, W_2 be two subspaces of V. Then we say V' is a **direct sum** of W_1 and W_2 , and we

$$V = W_1 \oplus W_2$$

If: (i)
$$V = W_1 + W_2$$
 (i.e., $\forall x \in V \implies x = u + v, u \in W_1, w \in W_2$)

(ii)
$$W_1 \cap W_2 = \{0\}$$

Ex: Let $V = \mathbb{R}^2 = \{(a, b) \mid a, b \in \mathbb{R}\}\$

$$W_1 = \{(a,0) \mid a \in \mathbb{R}\},\$$

 $W_2 = \{(0,b) \mid b \in \mathbb{R}\}$

Now,

$$\forall (x,y) \in \mathbb{R}^2,$$

$$\implies (x,y) = (x,0) + (0,y), \quad \text{where } (x,0) \in W_1 \text{ and } (0,y) \in W_2$$

$$\implies \mathbb{R}^2 = W_1 + W_2$$

$$(x,y) \in W_1 \cap W_2$$

Now,

$$\implies (x,y) \in W_1 \& (x,y) \in W_2$$

$$\implies y = 0 \& x = 0$$

$$\implies (x,y) = (0,0)$$

$$\implies W_1 \cap W_2 = \{(0,0)\}$$

$$\implies \mathbb{R}^2 = W_1 \oplus W_2$$

Definition:

Let $P_n(\mathbb{F})$ denote the space of all polynomials of degree at most n over \mathbb{F} . i.e.,

$$P_n(f) = \{a_0 + a_1x + a_2x^2 + \dots + a_nx^n \mid a_0, a_1, \dots, a_n \in \mathbb{F}\}\$$

 $\mathbf{E}\mathbf{x}$:

$$P_1(\mathbb{R}) = \{ a_0 + a_1 x \mid a_0, a_1 \in \mathbb{R} \}$$

$$P_2(\mathbb{R}) = \{ a_0 + a_1 x + a_2 x^2 \mid a_0, a_1, a_2 \in \mathbb{R} \}$$

Ex:

$$P_2(\mathbb{R}) = \{ a_0 + a_1 x + a_2 x^2 \mid a_0, a_1, a_2 \in \mathbb{R} \}$$

$$W_1 = \{ c + dx^2 \mid c, d \in \mathbb{R} \},$$

$$W_2 = \{ ex \mid e \in \mathbb{R} \}$$

Verify (i) W_1 and W_2 are subspaces (Home-work): 13.1

$$\forall V \in P_{2}(\mathbb{R})$$

$$\implies V = a_{0} + a_{1}x + a_{2}x^{2}$$

$$V = (a_{0} + a_{2}x^{2}) + a_{1}x$$

$$\implies P_{2}\mathbb{R} = W_{1} + W_{2}$$

$$a_{0} + a_{1}x + a_{2}x^{2} \in W_{1} \cap W_{2}$$

$$\implies a_{0} + a_{1}x + a_{2}x^{2} \in W_{1} \& a_{0} + a_{1}x + a_{2}x^{2} \in W_{2}$$

$$\implies a_{1} = 0 \& a_{0} = 0, a_{2} = 0$$

$$\implies a_{0} = a_{1} = a_{2} = 0$$

$$\implies a_{0} = a_{1} = a_{2} = 0$$

$$\implies a_{0} + a_{1}x + a_{2}x^{2} = 0 + 0.x + 0.x^{2}$$

$$\implies W_{1} \cap W_{2} = \{0\} = P_{2}(\mathbb{R}) = W_{1} \oplus W_{2}$$

 $\implies W_1 \cap W_2 = \{0\} = P_2(\mathbb{R}) = W_1 \oplus W_2$

$$W_1 = \{c + dx^2 \mid c, d \in \mathbb{R}\}\$$

$$W_2 = \{ex \mid e \in \mathbb{R}\}$$

Let

$$x_1 = a + bx^2 \quad \text{and} \quad y = c + dx^2$$

$$\alpha, \beta \in \mathbb{F}$$

$$\alpha x + \beta y = \alpha(a + bx^2) + \beta(c + dx^2)$$

$$= (\alpha a + \beta c) + (\alpha b + \beta d)x^2 \in W_1$$

$$\implies W_1 \text{ is a subspace of } P_2(\mathbb{R})$$

$$W_2 = \{ex \mid e \in \mathbb{R}\}$$

$$x = ex \quad \text{and} \quad y = fx$$

$$\alpha, \beta \in \mathbb{F}$$

$$\alpha x + \beta y = \alpha ex + \beta ex$$

$$= (e\alpha + \beta e)x \in W_2$$

$$\implies W_2 \text{ is a subspace of } P_2(\mathbb{R})$$

Theorem:

Let V(F) be a V.S. and W_1, W_2 be subspaces of V.

Then $V = W_1 \oplus W_2 \iff \forall x \in V, \ x = u + v, \ \text{for unique vectors} \ u \in W_1, \ v \in W_2.$

Example:

$$\mathbb{R}^2 = \{ (x_1, x_2) \mid x_1, x_2 \in \mathbb{R} \}$$

$$W_1 = \{(x_1, 0) \mid x_1 \in \mathbb{R}\}\$$

$$W_2 = \{(0, x_2) \mid x_2 \in \mathbb{R}\}\$$

$$\mathbb{R}^2 = W_1 \oplus W_2$$

$$\forall (x_1, x_2) \in \mathbb{R}^2$$

$$(x_1, x_2) = (x_1, 0) + (0, x_2)$$

$$(1,3) = (1,0) + (0,3)$$

Definition: For Direct Sum:

$$V = W_1 \oplus W_2 \oplus W_3$$

$$\iff$$

$$\begin{split} \mathbf{i.}W_1, W_2, W_3 \text{ are subspaces of } V \\ \mathbf{ii.}V &= W_1 + W_2 + W_3, \text{ i.e., } \forall x \in V, \ x = u_1 + u_2 + u_3, \ u_i \in W_i, \ i = 1, 2, 3 \\ \mathbf{iii.}W_1 \cap W_2 &= \{0\}, & (W_1 + W_2) \cap W_3 = \{0\} \\ & V &= W_1 \oplus W_2 \oplus W_3 \oplus \cdots \oplus W_n \end{split}$$

$$\mathbf{i.}W_1,W_2,\ldots,W_n \text{ are subspaces of } V$$

$$\mathbf{ii.}V=W_1+W_2+\cdots+W_n$$

$$\mathbf{iii.}(W_1+W_2+\cdots+W_{i-1})\cap W_i=\{0\},\ \forall i=1,2,3,\ldots,n$$

14 Quotient Space

Let V(F) be any vector space, and let W be a subspace of V. Define a relation " \sim " on V as:

For $a, b \in V$,

$$a \sim b \iff a - b \in W$$

Then, \sim is an equivalence relation.

14.1 Equivalence Classes

$$\bar{x} = \{ y \in V \mid y \sim x \} = \{ y \in V \mid y - x \in W \}$$

Equivalence class of x:

 $\bar{x} = \{ y \in V \mid y - x = w, w \in W \} = \{ y = a + w, w \in W \}$ $\bar{x} = \{ x + W \mid w \in W \}$ $\bar{x} = x + W$ (*)

Now:

$$ar{a} = ar{b} \iff a \sim b$$
 $\iff a - b \in W$
i.e. $a + W = b + W$
 $\implies a - b \in W$

Note:

$$\bar{a} = \bar{0}$$

$$\iff a + W = 0 + W = W$$

$$\iff a \sim 0$$

$$\iff a - 0 \in W$$

$$\iff a \in W$$
(*)

Now, let V(F) be any vector space and W be a subspace of V. Then the set

$$\frac{V}{W} = \{\bar{x} = x + W \mid x \in V\}$$

is a vector space over F.

14.2 Operations in $\frac{V}{W}$:

1. **Vector addition**:

$$\bar{x} = x + w, \ \bar{y} = y + w$$

$$\bar{x} + \bar{y} = (x + y) + W$$

2. **Scalar multiplication**:

$$\alpha \cdot \bar{x} = \alpha(x+W) =$$

$$(\alpha x) + W$$

3. **Zero vector**:

$$\begin{split} \bar{0} &= 0 + W \\ \bar{x} + \bar{0} &= (x + 0) + W \\ \Longrightarrow x + W &= \bar{x} \\ \forall \bar{x} \in \frac{V}{W} \\ \hline \\ \mathbf{,} \ \bar{0} &= 0 + W = W \end{split}$$

Thus, 0 + W is the zero vector.

15 Linear Combination

Let V(F) be a vector space and W be a subspace, and

 $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots, \mathbf{x}_k \in V$ and $\alpha_1, \alpha_2, \dots, \alpha_k \in F$.

Then,

$$\mathbf{x} = \alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \dots + \alpha_k \mathbf{x}_k \in V$$

is called a linear combination of x_1, x_2, \dots, x_k . x is the Linear Combination of $x_1, x_2, x_3, \dots, x_k$

Example 1:

Let $V = \mathbb{R}^3$, $F = \mathbb{R}$. Consider,

$$\mathbf{x}_1 = (1, 0, 0), \quad \mathbf{x}_2 = (0, 1, 1), \quad \mathbf{x}_3 = (0, 0, 1).$$

Let $\mathbf{u} = \alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \alpha_3 \mathbf{x}_3$. Then,

$$= \alpha_1(1,0,0) + \alpha_2(0,1,1) + \alpha_3(0,0,1)$$

= $(\alpha_1,0,0) + (0,\alpha_2,\alpha_2) + (0,0,\alpha_3)$
= $(\alpha_1,\alpha_2,\alpha_2 + \alpha_3).$

For $\alpha_1 = 1$, $\alpha_2 = 0$, $\alpha_3 = 1$, we get:

$$(1,0,0+1) = (1,0,1).$$

Thus, \mathbf{x} is a linear combination of $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$.

Example 2:

Let $V = \mathbb{R}^3$, $F = \mathbb{R}$. Consider,

$$\mathbf{d}_1 = (1, 0, 1), \quad \mathbf{d}_2 = (0, 1, 1).$$

Let $\mathbf{u} = (1, 2, 3)$. Check if \mathbf{u} is a linear combination of \mathbf{d}_1 and \mathbf{d}_2 . Assume:

$$\mathbf{u} = \alpha_1 \mathbf{d}_1 + \alpha_2 \mathbf{d}_2.$$

Then,

$$(1,2,3) = \alpha_1(1,0,1) + \alpha_2(0,1,1)$$

= $(\alpha_1, 0, \alpha_1) + (0, \alpha_2, \alpha_2)$
= $(\alpha_1, \alpha_2, \alpha_1 + \alpha_2)$.

Equating components:

$$\alpha_1 = 1$$
,

$$\alpha_2 = 2$$
,

$$\alpha_1 + \alpha_2 = 3.$$

However, $1+3 \neq 2$. Hence, **u** is **not** a linear combination of \mathbf{d}_1 and \mathbf{d}_2 .

_

16 Linear Span

Let V(F) be a vector space, and let S be any non-empty subset of V. Then we define the *linear span* of S by L(S) or Span(S) or $\langle S \rangle$. It is defined as:

$$L(S) = \{ \mathbf{u} \mid \mathbf{u} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k, \ \alpha_i \in F, \mathbf{v}_i \in S, \text{ and } k \text{ is finite} \}.$$

If $S = \emptyset$, then $L(S) = \{0\}$.

L(S) = Set of all linear combinations of elements of S.

16.1 Examples.

Example 1

Let
$$S = \{(1, 1, 0), (0, 1, 1)\} \subseteq \mathbb{R}^3$$
, $F = \mathbb{R}$. Then,

$$L(S) = \{\alpha_1(1, 1, 0) + \alpha_2(0, 1, 1) \mid \alpha_1, \alpha_2 \in \mathbb{R}\}$$

 $= \{ (\alpha_1, \alpha_1, 0 + 0, \alpha_2, \alpha_2) \mid \alpha_1, \alpha_2 \in \mathbb{R} \}.$ $= \{ (\alpha_1, \alpha_1 + \alpha_2, \alpha_2) \mid \alpha_1, \alpha_2 \in \mathbb{R} \}.$

Thus, L(S) is the set of all linear combinations of $\{(1,1,0),(0,1,1)\}.$

Example 2:

Let $V = \mathbb{R}^{2 \times 3}$, $F = \mathbb{R}$. Consider,

$$S = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \right\}.$$

Find L(S).

Solution:

We have,

$$L(S) = \left\{\alpha_1 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} + \alpha_2 \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \alpha_3 \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \mid \alpha_1, \alpha_2, \alpha_3 \in \mathbb{R} \right\}.$$

Expanding, we get:

$$L(S) = \left\{ \begin{pmatrix} \alpha_1 + \alpha_2 & \alpha_2 + \alpha_3 & \alpha_3 \\ \alpha_1 & \alpha_1 & \alpha_2 \end{pmatrix} \mid \alpha_1, \alpha_2, \alpha_3 \in \mathbb{R} \right\}.$$

Thus, L(S) is the set of all matrices of the form

$$\begin{pmatrix} \alpha_1 + \alpha_2 & \alpha_2 + \alpha_3 & \alpha_3 \\ \alpha_1 & \alpha_1 & \alpha_2 \end{pmatrix},$$

where $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$.

16.2 Properties of Linear Span

1.Let V(F) be any vector space and $S \subseteq V$. Then:

- 1. L(S) is a subspace of V.
- 2. $S \subseteq L(S)$.
- 3. If W is a subspace of V such that $S \subseteq W$, then $L(S) \subseteq W$.

L(S) is the smallest subspace of V that contains S.

2. Let L(S) = S. Then S is a subspace of V.

Proof

Forward: Let L(S) = S. Then S is a subspace.

Converse: Let S be a subspace. Also, $S \subseteq S$. Thus, L(S) = S.

3. If $S_1, S_2 \subseteq V$, then:

$$L(S_1 \cup S_2) = L(S_1) + L(S_2).$$

4. $S_1 \subseteq S_2 \subseteq V$ then :

$$L(S_1) \subseteq L(S_2)$$

5. L(L(S))=L(S)

Illustration:

Let $V = \mathbb{R}^2$.

$$S_1 = \{(1,0)\},\$$

 $S_2 = \{(0,1)\}.$

Then,

$$\begin{split} L(S_1) &= \{\alpha_1(1,0) \mid \alpha_1 \in \mathbb{R}\} = \{(\alpha_1,0) \mid \alpha_1 \in \mathbb{R}\}, \\ L(S_2) &= \{\alpha_2(0,1) \mid \alpha_2 \in \mathbb{R}\} = \{(0,\alpha_2) \mid \alpha_2 \in \mathbb{R}\}, \\ L(S_1 \cup S_2) &= \{\alpha_1(1,0) + \alpha_2(0,1) \mid \alpha_1,\alpha_2 \in \mathbb{R}\}, \\ &= \boxed{\{(\alpha_1,\alpha_2) \mid \alpha_1,\alpha_2 \in \mathbb{R}\}.} \end{split}$$

Also,

$$L(S_1) + L(S_2) = \{ (\alpha_1, 0) + (0, \alpha_2) \mid \alpha_1, \alpha_2 \in \mathbb{R} \}$$

= $\{ (\alpha_1, \alpha_2) \mid \alpha_1, \alpha_2 \in \mathbb{R} \}.$

Linearly Dependent Set

Let V(F) be a vector space, and $S \subseteq V$, we say that S is linearly dependent over F

If there exist
$$u_1, u_2, \dots, u_k \in S$$

and $\alpha_1, \alpha_2, \dots, \alpha_k \in F$

(not all zero) i.e. \exists at least one $\alpha_i \neq 0$

such that

$$\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_k u_k = \mathbf{0}$$
 (zero vector)

i.e., $\exists u_1, u_2, \dots, u_k \in S$ such that the equation

$$\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_k u_k = \mathbf{0}$$

has at least one non-zero solution.

Example.Let
$$V = \mathbb{R}^3(\mathbb{R})$$
, $S = \{(1, 1, 2), (2, 4, 2), (3, 0, 1)\}$

$$\begin{aligned} u_1 &= (1,2,1), \\ u_2 &= (2,4,2), \\ \alpha_1 &= -2 \neq 0, \\ \alpha_2 &= 1 \neq 0 \end{aligned}$$

$$-2 \cdot (1,2,1) + 1 \cdot (2,4,2) = (-2,-4,-2) + (2,4,2) = (0,0,0)$$

 \implies S is linearly dependent.

Check whether $S = \{(1, 2, 1), (2, 4, 2), (3, 0, 1)\}$ is L.D.?

Solution:

$$\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3 = \mathbf{0} \quad \Longrightarrow \quad (0, 0, 0)$$

Consider matrix:

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

Row reduce:

$$R_2 \to R_2 - 2R_1, \quad R_3 \to R_3 - R_1$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & -6 \\ 0 & 0 & -2 \end{bmatrix}$$

$$R_2 \to \frac{R_2}{-6}, \quad R_3 \to \frac{R_3}{-2}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Let
$$x_1 = 2x_2$$
, $x_2 = x_3$

$$\implies \alpha_1 = 2\alpha_2, \quad \alpha_2 + \alpha_3 = 0$$

Thus, S is linearly dependent.

17 Linear Independence and Dependence

Let V(F) be any vector space, and $S\subseteq V(F)$, then S is said to be linearly independent if S is not linearly dependent.

$$\begin{split} \text{i.e. } \forall u_1, u_2, \dots, u_k \in S, \quad & \alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_k u_k = 0 \\ \Longrightarrow & \alpha_1 = \alpha_2 = \alpha_3 = \dots = \alpha_k = 0 \end{split}$$

17.1 Linear dependence and linear independence of finite set

Let V(F) be any vector space and

$$S = \{u_1, u_2, u_3, \dots, u_n\} \subseteq V$$

Then S is linearly independent if:

$$\iff \boxed{\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_k u_k = 0}$$

$$\implies \alpha_1 = \alpha_2 = \dots = \alpha_k = 0$$

Example

Let
$$V = \mathbb{R}_3(\mathbb{R})$$

$$S = \{x + 1, x + x^2, x^2 + x^3\}$$

Consider:

$$\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3 = 0 \implies 0 + 0x + 0x^2 + 0x^3$$

$$\implies \alpha_1 (x+1) + \alpha_2 (x+x^2) + \alpha_3 (x^2 + x^3) = 0 + 0x + 0x^2 + 0x^3$$

$$\alpha_1 + (\alpha_2 + \alpha_3) x^2 + \alpha_3 x^3) = 0 + 0x + 0x^2 + 0x^3$$

$$\implies \alpha_1 + \alpha_2 + 2\alpha_3 = 0, \quad \alpha_2 t + \alpha_3 x^2 = 0x + 0x^2$$

$$\alpha_1 = 0, \quad \alpha_1 + \alpha_2 = 0, \quad +\alpha_2 + \alpha_3 = 0$$

$$\boxed{\alpha_1 = 0, \alpha_2 = 0, \alpha_3 = 0}$$

 $\therefore S$ is linearly independent.