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1 Postulates of Special Relativity

In 1905, Einstein in his paper stated two postulates of special theory of relativity. These are as follow:

• Postulate 1: The principle of relativity: the laws of physics are the same in all inertial frames.

• Postulate 2: The speed of light in vacuum is the same in all inertial frames

In addition, we will assume that the stage our physical laws act on is homogeneous and isotropic. This means
it does not matter where (=homogeneity) we perform an experiment and how it is oriented (=isotropy), the
laws of physics stay the same.

2 The Invariant of Special Relativity

Let’s start with a thought experiment that enables us to derive one of the most fundamental consequences
of the postulates of special relativity. Imagine, we have a spectator, standing at the origin of his coordinate
system and sending a light pulse straight up, where it is reflected by a mirror and finally reaches again the
point from where it was sent.

We have three important events:

• A : the light leaves the starting point
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Figure 1: Illustration of the thought experiment

• B : the light is reflected at a mirror

• C : the light returns to the starting point.

The time-interval between A and C is

tA − tC = ∆t =
2L

c

Next imagine a second spectator, standing at tA at the origin of his coordinate system and moving with
constant velocity u to the left, relative to the first spectator. The second spectator sees things a little
differently. In his frame of reference the point where the light ends up will not have the same coordinates as
the starting point.

Figure 2: Illustration of the thought experiment for a moving spectator

x′
A = 0 ̸= x′

C = u∆t′ß∆x′ = u∆t′

The time interval ∆t′ = t′C − t′A is equal to the distance l the light travels, as the second spectator observes
it, divided by the speed of light c.

∆t′ =
l

c

We can compute the distance traveled l using the Pythagorean theorem

l = 2

√(
1

2
u∆t′

)2

+ L2

Therefore,

c∆t′ = 2

√(
1

2
u∆t′

)2

+ L2

Hence,
∆x′ = u∆t′

c∆t′ = 2

√(
1

2
∆x′

)2

+ L2
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(c∆t′)2 = 4

((
1

2
∆x′

)2

+ L2

)2

(c∆t′)2 − (∆x′)2 = 4

((
1

2
∆x′

)2

+ L2

)2

− (∆x′)2 = 4L2

Therefore, we have found something which is the same for all observers: the quadratic form

(∆s)2 ≡ (c∆t)2 − (∆x)2 − (∆y)2 − (∆z)2

3 The Minkowski Notation

We can rewrite the invariant of special relativity as

ds2 = (cdt)2 − (dx)2 − (dy)2 − (dz)2

we can write above equation as,

ds2 = ηµνdxµdxν = η00(dx0)
2 + η11(dx1)

2 + η22(dx2)
2 + η33(dx3)
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Here Minkowski metric η00 = 1, η11 = −1, η22 = −1, η33 = −1, and ηµν = 0 (an equal way of writing this is
η = diag(1,−1,−1,−1))

4 Einstein summation convention

If an index occurs twice, a sum is implicitly assumed :

3∑
i=1

aibi = a1b1 + a2b2 + a3b3,

but
3∑

i=1

aibj = a1bj + a2bj + a3bj ̸= aibj

5 Four-Vectors

Renaming of the variables x0 = ct, x1 = x, x2 = y and x3 = z, to make it obvious that time and space
are now treated equally and to be able to use the rules introduced above. In addition, it’s conventional to
introduce the notion of a four- vector

dxµ =


dx0

dx1

dx2

dx3

 ,

because the equation above can be written equally using four-vectors and the Minkowski metric in matrix
form

(ds)2 = dxµη
µνdxν =

(
dx0 dx1 dx2 dx3

)
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 = dx2
0 − dx2

1 − dx2
2 − dx2
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A physical interpretation of ds is that it is the ”distance” between two events in spacetime. The mathematical
tool that tells us the distance between two infinitesimal separated points is called metric. Length of a four-
vector, which is given by the scalar product of the vector with itself

x2 = x · x = xµxνη
µν
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Analogously, the scalar product of two arbitrary four-vectors is given by,

x · y = xµyνη
µν

There is another, notational convention to make computations more streamlined. We define a four-vector
with upper index as

xµ = ηµνxν

The Minkowski metric is symmetric ηµν = ηνµ

6 Lorentz Transformation

It follows directly from the two postulates that ds2 = ηµνdxµdxν is the same in all inertial frames of reference:

ds′2 = dx′
µdx

′
νη

µν = ds2 = dxµdxνη
µν

Therefore, allowed transformations are those which leave this quadratic form or equally the scalar product
of Minkowski spacetime invariant. Denoting a generic transformation that transforms the description in one
frame of reference into the description in another frame with Λ, the transformed coordinates dx′

µ can be
written as:

dxµ → dx′
µ = Λσ

µdxσ

Then we can write the invariance condition as

(ds)2 = (ds′)2

dx · dx = dx′ · dx′

dxµdxνη
µν = dx′ · dx′

dxµdxνη
µν = dx′

µdx
′
νη

µν = Λσ
µdxσΛ

γ
γdxγη

µν

ηµν = Λµ
ση

σγΛν
γ

Or written in matrix notation
η = ΛT ηΛ

We define the Lorentz transformations as those transformations that leave the scalar product of Minkowski
spacetime invariant. In physical terms this means that Lorentz transformations describe changes between
frames of references that respect the postulates of special relativity.

7 Conserved Currents

We started these lectures by discussing the charge density ρ(x, t), the current density J(x, t) and their
relation through the continuity equation,

∂ρ

∂t
+∇ · J = 0

which tells us that charge is locally conserved. we first need to appreciate that the charge and current
densities sit nicely together in a 4-vector,

Jµ =

(
ρc
J

)
In our new, relativistic, notation, the continuity equation takes the particularly simple form

∂µJ
µ = 0

This equation is Lorentz invariant. This follows simply because the indices are contracted in the right way:
one up, and one down.
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8 Gauge Potentials and the Electromagnetic Tensor

Under Lorentz transformations, electric and magnetic fields will transform into each other.

8.1 Gauge Invariance and Relativity

Let us start by recalling some of the equations of electrostatics and magnetostatics,

∇×E = 0 =⇒ E = −∇ϕ

∇ ·B = 0 =⇒ B = ∇×A

However, in general these expressions can’t be correct. We know that when B and E change with time, the
two source-free Maxwell equations are

∇×E+
∂B

∂t
= 0 and ∇ ·B = 0

Nonetheless, it’s still possible to use the scalar and vector potentials to solve both of these equations. The
solutions are

E = −∇ϕ− ∂A

∂t
and B = ∇×A

where now ϕ = ϕ(x, t) and A = A(x, t) We can always shift A → A + ∇χ and B remains unchanged.
However, now this requires a compensating shift of

ϕ → ϕ− ∂χ

∂t
and A → A+∇χ

where, χ = χ(x, t) These are gauge transformations. We define

Aµ =

(
ϕ/c
A

)

9 The Electromagnetic Tensor

From the 4-derivative ∂µ = (∂/∂(ct),∇) and the 4-vector Aµ = (ϕ/c,−A), we can form the anti-symmetric
tensor

Fµν = ∂µAν − ∂νAµ

This is constructed to be invariant under gauge transformations.

Fµν → Fµν + ∂µ∂νχ− ∂ν∂µχ = Fµν

This already suggests that the components involve the E and B fields. To check that this is indeed the case,
we can do a few small computations,

F01 =
1

c

∂(−Ax)

∂t
− ∂(ϕ/c)

∂x
=

Ex

c

Similar computations for all other entries give us a matrix of electric and magnetic fields,

F12 =
∂(−Ay)

∂x
− ∂(Ax)

∂y
= −Bz

Fµν =


0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bz

−Ex/c −By Bz 0


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Fµν is called the electromagnetic tensor. Equivalently, we can raise both indices using the Minkowski metric
to get

Fµν = ηµρηνσFρσ =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bz

Ex/c −By Bz 0


Both Fµν and Fµν are tensors. They are tensors because they’reconstructed out of objects, Aµ, ∂µν and
ηµν , which themselves transform nicely under the Lorentz group. This means that the field strength must
transform as

F ′µν = Λµ
ρΛ

ν
ρF

ρσ

10 Maxwell Equations

We now have the machinery to write the Maxwell equations in a way which is manifestly compatible with
special relativity. They take a particularly simple form:

∂µF
µν = µ0J

µν , ∂µF̃
µν = 0

The Maxwell equations are not invariant under Lorentz transformations. This is because there is the dangling
ν index on both sides. Let’s now check that the Maxwell equations in relativistic form do indeed coincide
with the vector calculus equations that we’ve been studying in this course. We just need to expand the
different parts of the equation.

∂iF
i0 = µ0J

0 =⇒ ∇ · E =
ρ

ϵ0

∂µF
µi = µ0J

i =⇒ − 1

c2
∂E

∂t
+∇×B = µ0J

∂iF̃
i0 = 0 =⇒ ∇ ·B = 0

∂µF̃
µi = 0 =⇒ ∇×E+

∂B

∂t
= 0
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