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Abstract

In this discussion, we explore all four Maxwell’s equations in both
integral and differential forms, and see how they describe electric and
magnetic fields, how they interact, and why they work the way they do.
We’ll talk about Gauss’s laws for electric and magnetic fields, which tell
us about the nature of electric and magnetic flux and see some analogy of
electric field with magnetic field and why there is a need of Gauss’s law
of Magnetic fields. Then, we will dive into Faraday’s law, which explains
how changing magnetic fields create electric fields, and what is the nature
of that induced electric field, how differ with electrostatic field. Finally,
we’ll see how Ampère’s Law connects electricity to magnetism and how
Maxwell’s correction to it led to understand the electromagnetic wave
theory.
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Introduction

Maxwell’s equations are the most important equations of all time, if you need a
testament to the power of the equations then radio, television, Internet access
and Bluetooth technology are a few examples. When Maxwell worked on his
theory of electromagnetism, he ended up with not four but twenty equations that
describe the behavior of electric and magnetic fields. It was Oliver Heaviside
and Heinrich Hertz who combined and simplified Maxwell’s Equations into
four equations in the two decades after Maxwell’s death.

1 Gauss’s Law of Electric Fields

In Maxwell’s Equations we have to deal with two types of electric fields the
electrostatics fields produces by charges and the induces electric field produced
a changing magnetic field.

1.1 The Integral form of Gauss’s Law

Electric charges produce electric fields and the flux of that field passing to any
closed surface is proportional to the total charge within the surface.

˛
S

E⃗ · n̂ da =
Qenc

ϵ0
(1)

where left side of the equation 1 is the mathematical description of elec-
tric flux. There ia an electric field density and we are integrating that density
over entire surface in other words, electric flux is the number of field lines pen-
etrating surface and right side of the equation is the total charge contained
within that surface divided by a constant called permittivity of free space.(
ϵ0 = 8.85× 10−12 C2

N ·m2

)
Note: The unit normal(n̂) is the unit vector taken perpendicular to surface.

for closed surfaced the ambiguity in the direction of unit normal has been re-
solved, By convention, the unit normal vector for the closed surface is taken to
point outward(i.e. away from the volume closed by the surface).

• What do you think? Electric flux will define the physical motion of par-
ticle, because it’s kind of linked with electric field?

No, the electric flux is just the number of field lines that penetrate the
surface, especially normal to the surface and at the same point and time
electric flux may be different for two surfaces. That means they don’t
define the motion of a particle.
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1.2 The Differential form of Gauss’s Law

The divergence of electric field is equal to the volume charge density divided by
the permittivity of free space.

∇⃗ · E⃗ =
ρ

ϵ0
(2)

The divergence of electric field(ϕE⃗) is the tendency of field to flow away from a
specified location. In other words, the electric field produced by electric charges
diverges from positive charge and converges upon negative charge.

i.e. ∇⃗ · E⃗ > 0 : positive divergence (electric field diverges from +Q)

∇⃗ · E⃗ < 0 : negative divergence (electric field converges upon -Q)
The key factor in determining the divergence at any point is not simply the

spacing of the field lines at that point, but whether the flux out of an infinites-
imal small volume around the point is greater than, equal to, or less than the
flux into that volume.

• The divergence of electric field is directly proportional to the volume
charge density.

• Both flux and divergence deal with the flow of a vector field but with the
important difference. Flux is defined over an area while divergence applies
to individual points.

Note: The problems you are most likely to encounter that can be solved using
the differential form of Gauss’s law involve calculating the divergence of electric
field and using the result to determine the charge density at a specified location.

2 Gauss’s Law of Magnetic Fields

Gauss’s law of magnetic fields is similar in form but different in content from
Gauss’s law of electric fields. For both electric and magnetic fields, the integral
form of Gauss’s law involves the flux of fields over a closed surface. The key
difference in the electric field and the magnetic field versions of Gauss’s law
arises because opposite electric charges may be isolated from one another while
opposite magnetic poles (magnetic monopoles called north and south) always
occur in pair i.e. no magnetic monopoles exist and the lack of isolated magnetic
monopoles in nature has a profound impact on the behavior of magnetic field,
and this is why the existence of Gauss’s law of magnetic field is.

2.1 Integral form of the Gauss’s Law

Gauss’s law refers to magnetic flux which is the number of magnetic field lines
passing through a closed surface. The total magnetic flux passing through any
closed surface is zero. In other words, if we have a real or imaginary closed
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surface of any size and shape, the total magnetic flux passing through the surface
must be zero.

˛
S

B⃗ · n̂ da = 0 (3)

Zero flux does not mean that zero magnetic field lines penetrate the surface.
This means that for every magnetic field line that enters the volume enclosed
by the surface, there must be a magnetic field line leaving that volume. Thus,
inward(negative)magnetic flux must be exactly equal to the outward(positive)
magnetic flux.

Gauss’s law for magnetic field arises directly from the lack of isolated mag-
netic poles (i.e. magnetic monopoles) in nature.

2.2 The Differential form of Gauss’s Law

The continuous nature of magnetic field lines makes the differential form of
Gauss’s law quite simple. The divergence of magnetic field at any point is zero.

∇⃗ · B⃗ = 0 (4)

There is also another way to understand this law by analogy to electric field.
For electric field, the divergence at any location is proportional to electric charge
density at that location. Since it is not possible to isolate magnetic poles, so
we can not have a north pole without a south pole. This is why the magnetic
charge density must be zero everywhere. That means that the divergence of
magnetic field must also be zero.

3 Faraday’s Law

In a series of experiments in 1831, Michael Faraday demonstrated that an electric
current may be induced in a circuit by changing the magnetic flux closed by
the circuit. The discovery is made even more useful when extended to the
general statement that a changing magnetic field produces an electric field.
Such induced electric fields are very different from the fields produced by electric
charges.

3.1 The Integral form of Faraday’s Law
˛
C

E⃗ · d⃗l = − d

dl

ˆ
S

B⃗ · n̂ da

˛
C

E⃗ · d⃗l = −
ˆ
S

∂B⃗

∂l
· n̂ da (Faraday’s law alternative form )

(5)
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Changing magnetic flux through a surface induces an emf(electromotive
force) in any boundary path of the surface and changing magnetic flux field
induces circulating electric field.

If magnetic flux through a surface changes, then an electric field (circulating
electric field) induces along the boundary of that surface and if we place a
conducting wire along the boundary, then current will flow.

• Induced Electric field Induced electric field is similar to electrostatic field
but different in nature.
case I: Electrostatic field Electrostatics field is charge base field for
which positive charge is the originating point and negative charge is the
terminating point. Electrostatic field is conservative in nature. for elec-
trostatic field

∇⃗ · E⃗ ̸= 0

case II: Induced Electric field Induced electric field is produced by
changing magnetic flux. Here, there is no originating and terminating
point. The induced electric electric field forms loops and non conservative
in nature.

∇⃗ · E⃗ = 0

˛
C

E⃗ · d⃗l →

 Circulating electric field is present
everywhere in the path C and
capable of driving charge.

 .

Note: Magnetic flux

ϕB⃗ =

ˆ
S

B⃗ · n̂ da (6)

If you think that this quantity in equation (6) must be zero according to Gauss’s
law for magnetic fields, then let me tell you, if you look this quantity more
carefully, then the integral in this expression is over any surface, whereas the
integral in Gauss’s law is specifically over a closed surface. The magnetic flux
through an open surface may indeed be non-zero. It is only when the surface
is closed, the number of magnetic field lines passing through the surface in one
direction must equal to the number passing through in the other direction.

• Lenz’s Law The name comes from Heinrich Lenz, a German physicist
who had an important insight concerning the direction of current induced
by changing magnetic flux.
current induced by a changing magnetic flux always flows in a direction
that opposes the change in flux.

There are three ways to study the change in magnetic flux.
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Figure 1: Changing Magnetic Flux and Induced Current

3.2 The differential form of Faraday’s law

A circulating electric field is produced by a magnetic field that changes with
time.

∇⃗ · E⃗ = −∂B⃗

∂t
(7)

The left side of the equation is a mathematical description of curl of electric
field, which is the tendency of the field lines to circulate around a point, and
the right side represents the rate of change of magnetic field over time.

4 The Ampere-Maxwell Law

For thousands of years, the only known sources of magnetic fields were certain
iron ores and other materials that had been magnetized. It was Hans Chris-
tian Oersted who deflected a compass needle by passing an electric current
nearby and then, Ampere had begun quantifying the relationship between elec-
tric current and magnetic fields. Ampere’s law relates a steady electric current
to a circulating magnetic field and then James Clerk Maxwell began his
work in the field in the 1850s. Ampere’s law was only known to apply static
situations involving steady current. It was Maxwell’s addition of another source
term, a changing electric flux that extended the applicability of Ampere’s law to
time-dependent conditions. Now this is called Ampere’s-Maxwell law that
allowed Maxwell to discern the electromagnetic nature of light and to develop
the comprehensive theory of electromagnetism.

4.1 The Integral Form of Ampere-Maxwell Law

A changing electric flux through a surface produces a circulating magnetic field
around any path that bounded that surface.

˛
c

B⃗ · d⃗l = µ0 Ienc + µ0ϵ0
d

dt

ˆ
S

E⃗ · n̂ da (8)

We have the mathematical description of circulation of magnetic field around a
closed path C in the left side of the equation (8) and the right side includes two
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sources for magnetic field, a steady conduction current and a changing
electric flux through any surface as bounded by path C. Magnetic fields in-
duced by changing electric flux are extremely weak.Therefore, it is very difficult
to measure.

since no conduction current flows between the capacitor plates, what else
might be going on in that region that would serve as the source of a magnetic
field?

note: Displacement Current and Changing Magnetic Flux
The original form of Ampere’s Law stated that the circulation of the magnetic
field around a closed loop is proportional to the total current passing through
it. However, a problem arose when applying this law to a charging capacitor. If
we consider an Amperical loop around a wire leading to the capacitor, the law
correctly predicts a magnetic field due to the conduction current. But if we take
a surface passing through the gap between the capacitor plates, no conduction
current is present, and according to the original Ampere’s Law, there should be
no magnetic field, which contradicts experimental observations. To resolve this,
Maxwell introduced the concept of displacement current, recognizing that the
changing electric field between the capacitor plates creates a changing electric
flux, which effectively behaves like a current. He modified Ampere’s Law by
adding a term for this displacement current.

Figure 2: capacitor circuit

Id = ϵ0
∂ϕE⃗

∂t

Where Id is the displacement current.
Then the final equation look like the following...

˛
c

B⃗ · d⃗l = µ0 Ienc + µ0Id
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4.2 The Differential form of the Ampere–Maxwell law

A circulating magnetic field is produced by an electric current and an electric
field that changes with time.

∇⃗ × B⃗ = µ0J⃗ + µ0ϵ0
∂E⃗

∂t
(9)

where,

I =

ˆ
S

J⃗ n̂ da

The left side of the equation (9) is the curl of the magnetic field (the tendency
of the field lines to circulate around a point).The two terms on the right side
represent the electric current density (the amount of current through a cross
section of the conductor) and the time rate of change of the electric field.
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